Evaluate
\sqrt{10}+3\approx 6.16227766
Share
Copied to clipboard
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{2\sqrt{18}-\sqrt{27}}{\sqrt{3}}
Rationalize the denominator of \frac{2\sqrt{5}+4\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{2\sqrt{18}-\sqrt{27}}{\sqrt{3}}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{2\times 3\sqrt{2}-\sqrt{27}}{\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{6\sqrt{2}-\sqrt{27}}{\sqrt{3}}
Multiply 2 and 3 to get 6.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{6\sqrt{2}-3\sqrt{3}}{\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{6\sqrt{2}-3\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2}-\frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{6}-\frac{2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{3} times \frac{2}{2}.
\frac{3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}-2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{6}
Since \frac{3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}}{6} and \frac{2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{10}+12\sqrt{6}-12\sqrt{6}+18}{6}
Do the multiplications in 3\left(2\sqrt{5}+4\sqrt{3}\right)\sqrt{2}-2\left(6\sqrt{2}-3\sqrt{3}\right)\sqrt{3}.
\frac{6\sqrt{10}+18}{6}
Do the calculations in 6\sqrt{10}+12\sqrt{6}-12\sqrt{6}+18.
\sqrt{10}+3
Divide each term of 6\sqrt{10}+18 by 6 to get \sqrt{10}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}