Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{\left(4\sqrt{5}-\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}
Rationalize the denominator of \frac{2\sqrt{5}+\sqrt{10}}{4\sqrt{5}-\sqrt{10}} by multiplying numerator and denominator by 4\sqrt{5}+\sqrt{10}.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{\left(4\sqrt{5}\right)^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(4\sqrt{5}-\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{4^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{10}\right)^{2}}
Expand \left(4\sqrt{5}\right)^{2}.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{16\left(\sqrt{5}\right)^{2}-\left(\sqrt{10}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{16\times 5-\left(\sqrt{10}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{80-\left(\sqrt{10}\right)^{2}}
Multiply 16 and 5 to get 80.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{80-10}
The square of \sqrt{10} is 10.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{70}
Subtract 10 from 80 to get 70.
\frac{8\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{10}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Apply the distributive property by multiplying each term of 2\sqrt{5}+\sqrt{10} by each term of 4\sqrt{5}+\sqrt{10}.
\frac{8\times 5+2\sqrt{5}\sqrt{10}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
The square of \sqrt{5} is 5.
\frac{40+2\sqrt{5}\sqrt{10}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Multiply 8 and 5 to get 40.
\frac{40+2\sqrt{5}\sqrt{5}\sqrt{2}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{40+2\times 5\sqrt{2}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{40+10\sqrt{2}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Multiply 2 and 5 to get 10.
\frac{40+10\sqrt{2}+4\sqrt{5}\sqrt{2}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{40+10\sqrt{2}+4\times 5\sqrt{2}+\left(\sqrt{10}\right)^{2}}{70}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{40+10\sqrt{2}+20\sqrt{2}+\left(\sqrt{10}\right)^{2}}{70}
Multiply 4 and 5 to get 20.
\frac{40+30\sqrt{2}+\left(\sqrt{10}\right)^{2}}{70}
Combine 10\sqrt{2} and 20\sqrt{2} to get 30\sqrt{2}.
\frac{40+30\sqrt{2}+10}{70}
The square of \sqrt{10} is 10.
\frac{50+30\sqrt{2}}{70}
Add 40 and 10 to get 50.