Evaluate
\frac{3\sqrt{2}+5}{7}\approx 1.320377241
Share
Copied to clipboard
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{\left(4\sqrt{5}-\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}
Rationalize the denominator of \frac{2\sqrt{5}+\sqrt{10}}{4\sqrt{5}-\sqrt{10}} by multiplying numerator and denominator by 4\sqrt{5}+\sqrt{10}.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{\left(4\sqrt{5}\right)^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(4\sqrt{5}-\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{4^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{10}\right)^{2}}
Expand \left(4\sqrt{5}\right)^{2}.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{16\left(\sqrt{5}\right)^{2}-\left(\sqrt{10}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{16\times 5-\left(\sqrt{10}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{80-\left(\sqrt{10}\right)^{2}}
Multiply 16 and 5 to get 80.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{80-10}
The square of \sqrt{10} is 10.
\frac{\left(2\sqrt{5}+\sqrt{10}\right)\left(4\sqrt{5}+\sqrt{10}\right)}{70}
Subtract 10 from 80 to get 70.
\frac{8\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{10}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Apply the distributive property by multiplying each term of 2\sqrt{5}+\sqrt{10} by each term of 4\sqrt{5}+\sqrt{10}.
\frac{8\times 5+2\sqrt{5}\sqrt{10}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
The square of \sqrt{5} is 5.
\frac{40+2\sqrt{5}\sqrt{10}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Multiply 8 and 5 to get 40.
\frac{40+2\sqrt{5}\sqrt{5}\sqrt{2}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{40+2\times 5\sqrt{2}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{40+10\sqrt{2}+4\sqrt{10}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Multiply 2 and 5 to get 10.
\frac{40+10\sqrt{2}+4\sqrt{5}\sqrt{2}\sqrt{5}+\left(\sqrt{10}\right)^{2}}{70}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{40+10\sqrt{2}+4\times 5\sqrt{2}+\left(\sqrt{10}\right)^{2}}{70}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{40+10\sqrt{2}+20\sqrt{2}+\left(\sqrt{10}\right)^{2}}{70}
Multiply 4 and 5 to get 20.
\frac{40+30\sqrt{2}+\left(\sqrt{10}\right)^{2}}{70}
Combine 10\sqrt{2} and 20\sqrt{2} to get 30\sqrt{2}.
\frac{40+30\sqrt{2}+10}{70}
The square of \sqrt{10} is 10.
\frac{50+30\sqrt{2}}{70}
Add 40 and 10 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}