Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times 2\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+2\sqrt{182}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{4\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+2\sqrt{182}}
Multiply 2 and 2 to get 4.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{\left(2\sqrt{10}+2\sqrt{182}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}
Rationalize the denominator of \frac{4\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+2\sqrt{182}} by multiplying numerator and denominator by 2\sqrt{10}-2\sqrt{182}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{\left(2\sqrt{10}\right)^{2}-\left(2\sqrt{182}\right)^{2}}
Consider \left(2\sqrt{10}+2\sqrt{182}\right)\left(2\sqrt{10}-2\sqrt{182}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{2^{2}\left(\sqrt{10}\right)^{2}-\left(2\sqrt{182}\right)^{2}}
Expand \left(2\sqrt{10}\right)^{2}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{4\left(\sqrt{10}\right)^{2}-\left(2\sqrt{182}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{4\times 10-\left(2\sqrt{182}\right)^{2}}
The square of \sqrt{10} is 10.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{40-\left(2\sqrt{182}\right)^{2}}
Multiply 4 and 10 to get 40.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{40-2^{2}\left(\sqrt{182}\right)^{2}}
Expand \left(2\sqrt{182}\right)^{2}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{40-4\left(\sqrt{182}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{40-4\times 182}
The square of \sqrt{182} is 182.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{40-728}
Multiply 4 and 182 to get 728.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-2\sqrt{182}\right)}{-688}
Subtract 728 from 40 to get -688.
\frac{8\left(\sqrt{10}\right)^{2}-8\sqrt{10}\sqrt{182}-16\sqrt{10}\sqrt{2}+16\sqrt{2}\sqrt{182}}{-688}
Apply the distributive property by multiplying each term of 4\sqrt{10}-8\sqrt{2} by each term of 2\sqrt{10}-2\sqrt{182}.
\frac{8\times 10-8\sqrt{10}\sqrt{182}-16\sqrt{10}\sqrt{2}+16\sqrt{2}\sqrt{182}}{-688}
The square of \sqrt{10} is 10.
\frac{80-8\sqrt{10}\sqrt{182}-16\sqrt{10}\sqrt{2}+16\sqrt{2}\sqrt{182}}{-688}
Multiply 8 and 10 to get 80.
\frac{80-8\sqrt{1820}-16\sqrt{10}\sqrt{2}+16\sqrt{2}\sqrt{182}}{-688}
To multiply \sqrt{10} and \sqrt{182}, multiply the numbers under the square root.
\frac{80-8\sqrt{1820}-16\sqrt{2}\sqrt{5}\sqrt{2}+16\sqrt{2}\sqrt{182}}{-688}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{80-8\sqrt{1820}-16\times 2\sqrt{5}+16\sqrt{2}\sqrt{182}}{-688}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{80-8\sqrt{1820}-32\sqrt{5}+16\sqrt{2}\sqrt{182}}{-688}
Multiply -16 and 2 to get -32.
\frac{80-8\sqrt{1820}-32\sqrt{5}+16\sqrt{2}\sqrt{2}\sqrt{91}}{-688}
Factor 182=2\times 91. Rewrite the square root of the product \sqrt{2\times 91} as the product of square roots \sqrt{2}\sqrt{91}.
\frac{80-8\sqrt{1820}-32\sqrt{5}+16\times 2\sqrt{91}}{-688}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{80-8\sqrt{1820}-32\sqrt{5}+32\sqrt{91}}{-688}
Multiply 16 and 2 to get 32.
\frac{80-8\times 2\sqrt{455}-32\sqrt{5}+32\sqrt{91}}{-688}
Factor 1820=2^{2}\times 455. Rewrite the square root of the product \sqrt{2^{2}\times 455} as the product of square roots \sqrt{2^{2}}\sqrt{455}. Take the square root of 2^{2}.
\frac{80-16\sqrt{455}-32\sqrt{5}+32\sqrt{91}}{-688}
Multiply -8 and 2 to get -16.