Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{3}-5\right)\left(2\sqrt{3}-5\right)}{\left(2\sqrt{3}+5\right)\left(2\sqrt{3}-5\right)}
Rationalize the denominator of \frac{2\sqrt{3}-5}{2\sqrt{3}+5} by multiplying numerator and denominator by 2\sqrt{3}-5.
\frac{\left(2\sqrt{3}-5\right)\left(2\sqrt{3}-5\right)}{\left(2\sqrt{3}\right)^{2}-5^{2}}
Consider \left(2\sqrt{3}+5\right)\left(2\sqrt{3}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-5\right)^{2}}{\left(2\sqrt{3}\right)^{2}-5^{2}}
Multiply 2\sqrt{3}-5 and 2\sqrt{3}-5 to get \left(2\sqrt{3}-5\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}-20\sqrt{3}+25}{\left(2\sqrt{3}\right)^{2}-5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-5\right)^{2}.
\frac{4\times 3-20\sqrt{3}+25}{\left(2\sqrt{3}\right)^{2}-5^{2}}
The square of \sqrt{3} is 3.
\frac{12-20\sqrt{3}+25}{\left(2\sqrt{3}\right)^{2}-5^{2}}
Multiply 4 and 3 to get 12.
\frac{37-20\sqrt{3}}{\left(2\sqrt{3}\right)^{2}-5^{2}}
Add 12 and 25 to get 37.
\frac{37-20\sqrt{3}}{2^{2}\left(\sqrt{3}\right)^{2}-5^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{37-20\sqrt{3}}{4\left(\sqrt{3}\right)^{2}-5^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{37-20\sqrt{3}}{4\times 3-5^{2}}
The square of \sqrt{3} is 3.
\frac{37-20\sqrt{3}}{12-5^{2}}
Multiply 4 and 3 to get 12.
\frac{37-20\sqrt{3}}{12-25}
Calculate 5 to the power of 2 and get 25.
\frac{37-20\sqrt{3}}{-13}
Subtract 25 from 12 to get -13.
\frac{-37+20\sqrt{3}}{13}
Multiply both numerator and denominator by -1.