Evaluate
\sqrt{6}\approx 2.449489743
Share
Copied to clipboard
\frac{\left(2\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Rationalize the denominator of \frac{2\sqrt{3}-\sqrt{6}}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\frac{\left(2\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+1\right)}{2-1}
Square \sqrt{2}. Square 1.
\frac{\left(2\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+1\right)}{1}
Subtract 1 from 2 to get 1.
\left(2\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+1\right)
Anything divided by one gives itself.
2\sqrt{3}\sqrt{2}+2\sqrt{3}-\sqrt{6}\sqrt{2}-\sqrt{6}
Apply the distributive property by multiplying each term of 2\sqrt{3}-\sqrt{6} by each term of \sqrt{2}+1.
2\sqrt{6}+2\sqrt{3}-\sqrt{6}\sqrt{2}-\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{6}+2\sqrt{3}-\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{6}+2\sqrt{3}-2\sqrt{3}-\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{6}-\sqrt{6}
Combine 2\sqrt{3} and -2\sqrt{3} to get 0.
\sqrt{6}
Combine 2\sqrt{6} and -\sqrt{6} to get \sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}