Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{3}-\sqrt{5}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{3}-\sqrt{5}}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{5}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{5}\right)\left(2-\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{5}\right)\left(2-\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
\left(2\sqrt{3}-\sqrt{5}\right)\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
4\sqrt{3}-2\left(\sqrt{3}\right)^{2}-2\sqrt{5}+\sqrt{3}\sqrt{5}
Apply the distributive property by multiplying each term of 2\sqrt{3}-\sqrt{5} by each term of 2-\sqrt{3}.
4\sqrt{3}-2\times 3-2\sqrt{5}+\sqrt{3}\sqrt{5}
The square of \sqrt{3} is 3.
4\sqrt{3}-6-2\sqrt{5}+\sqrt{3}\sqrt{5}
Multiply -2 and 3 to get -6.
4\sqrt{3}-6-2\sqrt{5}+\sqrt{15}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.