Evaluate
\sqrt{6}-2\approx 0.449489743
Factor
\sqrt{6} - 2 = 0.449489743
Share
Copied to clipboard
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}
Rationalize the denominator of \frac{2\sqrt{3}-\sqrt{2}}{\sqrt{3}+2\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-2\sqrt{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{3-\left(2\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{3-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{3-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{3-4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{3-8}
Multiply 4 and 2 to get 8.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}{-5}
Subtract 8 from 3 to get -5.
\frac{2\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}-\sqrt{2}\sqrt{3}+2\left(\sqrt{2}\right)^{2}}{-5}
Apply the distributive property by multiplying each term of 2\sqrt{3}-\sqrt{2} by each term of \sqrt{3}-2\sqrt{2}.
\frac{2\times 3-4\sqrt{3}\sqrt{2}-\sqrt{2}\sqrt{3}+2\left(\sqrt{2}\right)^{2}}{-5}
The square of \sqrt{3} is 3.
\frac{6-4\sqrt{3}\sqrt{2}-\sqrt{2}\sqrt{3}+2\left(\sqrt{2}\right)^{2}}{-5}
Multiply 2 and 3 to get 6.
\frac{6-4\sqrt{6}-\sqrt{2}\sqrt{3}+2\left(\sqrt{2}\right)^{2}}{-5}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{6-4\sqrt{6}-\sqrt{6}+2\left(\sqrt{2}\right)^{2}}{-5}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{6-5\sqrt{6}+2\left(\sqrt{2}\right)^{2}}{-5}
Combine -4\sqrt{6} and -\sqrt{6} to get -5\sqrt{6}.
\frac{6-5\sqrt{6}+2\times 2}{-5}
The square of \sqrt{2} is 2.
\frac{6-5\sqrt{6}+4}{-5}
Multiply 2 and 2 to get 4.
\frac{10-5\sqrt{6}}{-5}
Add 6 and 4 to get 10.
-2+\sqrt{6}
Divide each term of 10-5\sqrt{6} by -5 to get -2+\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}