Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Rationalize the denominator of \frac{2\sqrt{3}}{7+\sqrt{6}} by multiplying numerator and denominator by 7-\sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{49-6}
Square 7. Square \sqrt{6}.
\frac{2\sqrt{3}\left(7-\sqrt{6}\right)}{43}
Subtract 6 from 49 to get 43.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{6}}{43}
Use the distributive property to multiply 2\sqrt{3} by 7-\sqrt{6}.
\frac{14\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}}{43}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{14\sqrt{3}-2\times 3\sqrt{2}}{43}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{14\sqrt{3}-6\sqrt{2}}{43}
Multiply -2 and 3 to get -6.