Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}+\frac{\sqrt{3}}{\sqrt{3}-2}
Rationalize the denominator of \frac{2\sqrt{3}}{2\sqrt{3}-3} by multiplying numerator and denominator by 2\sqrt{3}+3.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
Consider \left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{12-3^{2}}+\frac{\sqrt{3}}{\sqrt{3}-2}
Multiply 4 and 3 to get 12.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{12-9}+\frac{\sqrt{3}}{\sqrt{3}-2}
Calculate 3 to the power of 2 and get 9.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}}{\sqrt{3}-2}
Subtract 9 from 12 to get 3.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{3-4}
Square \sqrt{3}. Square 2.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{-1}
Subtract 4 from 3 to get -1.
\frac{2\sqrt{3}\left(2\sqrt{3}+3\right)}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
Anything divided by -1 gives its opposite.
\frac{4\left(\sqrt{3}\right)^{2}+6\sqrt{3}}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
Use the distributive property to multiply 2\sqrt{3} by 2\sqrt{3}+3.
\frac{4\times 3+6\sqrt{3}}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
The square of \sqrt{3} is 3.
\frac{12+6\sqrt{3}}{3}-\sqrt{3}\left(\sqrt{3}+2\right)
Multiply 4 and 3 to get 12.
\frac{12+6\sqrt{3}}{3}-\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}\right)
Use the distributive property to multiply \sqrt{3} by \sqrt{3}+2.
\frac{12+6\sqrt{3}}{3}-\left(3+2\sqrt{3}\right)
The square of \sqrt{3} is 3.
\frac{12+6\sqrt{3}}{3}-3-2\sqrt{3}
To find the opposite of 3+2\sqrt{3}, find the opposite of each term.
\frac{12+6\sqrt{3}}{3}+\frac{3\left(-3-2\sqrt{3}\right)}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3-2\sqrt{3} times \frac{3}{3}.
\frac{12+6\sqrt{3}+3\left(-3-2\sqrt{3}\right)}{3}
Since \frac{12+6\sqrt{3}}{3} and \frac{3\left(-3-2\sqrt{3}\right)}{3} have the same denominator, add them by adding their numerators.
\frac{12+6\sqrt{3}-9-6\sqrt{3}}{3}
Do the multiplications in 12+6\sqrt{3}+3\left(-3-2\sqrt{3}\right).
\frac{3}{3}
Do the calculations in 12+6\sqrt{3}-9-6\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}