Evaluate
\frac{-\sqrt{3}-9}{13}\approx -0.82554237
Share
Copied to clipboard
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{\left(1-3\sqrt{3}\right)\left(1+3\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{3}}{1-3\sqrt{3}} by multiplying numerator and denominator by 1+3\sqrt{3}.
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{1^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(1-3\sqrt{3}\right)\left(1+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{1-\left(-3\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{1-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{1-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{1-9\times 3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{1-27}
Multiply 9 and 3 to get 27.
\frac{2\sqrt{3}\left(1+3\sqrt{3}\right)}{-26}
Subtract 27 from 1 to get -26.
-\frac{1}{13}\sqrt{3}\left(1+3\sqrt{3}\right)
Divide 2\sqrt{3}\left(1+3\sqrt{3}\right) by -26 to get -\frac{1}{13}\sqrt{3}\left(1+3\sqrt{3}\right).
-\frac{1}{13}\sqrt{3}-\frac{1}{13}\sqrt{3}\times 3\sqrt{3}
Use the distributive property to multiply -\frac{1}{13}\sqrt{3} by 1+3\sqrt{3}.
-\frac{1}{13}\sqrt{3}-\frac{1}{13}\times 3\times 3
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\frac{1}{13}\sqrt{3}+\frac{-3}{13}\times 3
Express -\frac{1}{13}\times 3 as a single fraction.
-\frac{1}{13}\sqrt{3}-\frac{3}{13}\times 3
Fraction \frac{-3}{13} can be rewritten as -\frac{3}{13} by extracting the negative sign.
-\frac{1}{13}\sqrt{3}+\frac{-3\times 3}{13}
Express -\frac{3}{13}\times 3 as a single fraction.
-\frac{1}{13}\sqrt{3}+\frac{-9}{13}
Multiply -3 and 3 to get -9.
-\frac{1}{13}\sqrt{3}-\frac{9}{13}
Fraction \frac{-9}{13} can be rewritten as -\frac{9}{13} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}