Evaluate
12\sqrt{5}\approx 26.83281573
Share
Copied to clipboard
\frac{2\times 2\times 3\sqrt{3}\sqrt{5}\sqrt{3}\sqrt{2}}{\sqrt{18}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{2\times 2\times 3\times 3\sqrt{5}\sqrt{2}}{\sqrt{18}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{4\times 3\times 3\sqrt{5}\sqrt{2}}{\sqrt{18}}
Multiply 2 and 2 to get 4.
\frac{12\times 3\sqrt{5}\sqrt{2}}{\sqrt{18}}
Multiply 4 and 3 to get 12.
\frac{36\sqrt{5}\sqrt{2}}{\sqrt{18}}
Multiply 12 and 3 to get 36.
\frac{36\sqrt{10}}{\sqrt{18}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{36\sqrt{10}}{3\sqrt{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{12\sqrt{10}}{\sqrt{2}}
Cancel out 3 in both numerator and denominator.
\frac{12\sqrt{10}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{12\sqrt{10}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{12\sqrt{10}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{12\sqrt{2}\sqrt{5}\sqrt{2}}{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{12\times 2\sqrt{5}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
12\sqrt{5}
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}