Evaluate
-\frac{\sqrt{3}}{3}+3\approx 2.422649731
Factor
\frac{9 - \sqrt{3}}{3} = 2.4226497308103743
Share
Copied to clipboard
\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{3}+8}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{6\sqrt{3}-2\left(\sqrt{3}\right)^{2}+24-8\sqrt{3}}{6}
Apply the distributive property by multiplying each term of 2\sqrt{3}+8 by each term of 3-\sqrt{3}.
\frac{6\sqrt{3}-2\times 3+24-8\sqrt{3}}{6}
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}-6+24-8\sqrt{3}}{6}
Multiply -2 and 3 to get -6.
\frac{6\sqrt{3}+18-8\sqrt{3}}{6}
Add -6 and 24 to get 18.
\frac{-2\sqrt{3}+18}{6}
Combine 6\sqrt{3} and -8\sqrt{3} to get -2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}