Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{3}+8}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{\left(2\sqrt{3}+8\right)\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{6\sqrt{3}-2\left(\sqrt{3}\right)^{2}+24-8\sqrt{3}}{6}
Apply the distributive property by multiplying each term of 2\sqrt{3}+8 by each term of 3-\sqrt{3}.
\frac{6\sqrt{3}-2\times 3+24-8\sqrt{3}}{6}
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}-6+24-8\sqrt{3}}{6}
Multiply -2 and 3 to get -6.
\frac{6\sqrt{3}+18-8\sqrt{3}}{6}
Add -6 and 24 to get 18.
\frac{-2\sqrt{3}+18}{6}
Combine 6\sqrt{3} and -8\sqrt{3} to get -2\sqrt{3}.