Evaluate
\frac{\sqrt{5}\left(\sqrt{15}+2\right)}{5}\approx 2.626477999
Factor
\frac{\sqrt{5} {(\sqrt{3} \sqrt{5} + 2)}}{5} = 2.6264779985687934
Share
Copied to clipboard
\frac{\left(2\sqrt{3}+3\sqrt{5}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{3}+3\sqrt{5}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\left(2\sqrt{3}+3\sqrt{5}\right)\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{2\sqrt{3}\sqrt{15}+3\sqrt{5}\sqrt{15}}{15}
Use the distributive property to multiply 2\sqrt{3}+3\sqrt{5} by \sqrt{15}.
\frac{2\sqrt{3}\sqrt{3}\sqrt{5}+3\sqrt{5}\sqrt{15}}{15}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{2\times 3\sqrt{5}+3\sqrt{5}\sqrt{15}}{15}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6\sqrt{5}+3\sqrt{5}\sqrt{15}}{15}
Multiply 2 and 3 to get 6.
\frac{6\sqrt{5}+3\sqrt{5}\sqrt{5}\sqrt{3}}{15}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{6\sqrt{5}+3\times 5\sqrt{3}}{15}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{6\sqrt{5}+15\sqrt{3}}{15}
Multiply 3 and 5 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}