Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{3}+1}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\frac{2\sqrt{3}+1}{3+2\sqrt{3}+1+1}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}+1}{4+2\sqrt{3}+1}
Add 3 and 1 to get 4.
\frac{2\sqrt{3}+1}{5+2\sqrt{3}}
Add 4 and 1 to get 5.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{3}+1}{5+2\sqrt{3}} by multiplying numerator and denominator by 5-2\sqrt{3}.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{5^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{25-\left(2\sqrt{3}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{25-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{25-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{25-4\times 3}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{25-12}
Multiply 4 and 3 to get 12.
\frac{\left(2\sqrt{3}+1\right)\left(5-2\sqrt{3}\right)}{13}
Subtract 12 from 25 to get 13.
\frac{8\sqrt{3}-4\left(\sqrt{3}\right)^{2}+5}{13}
Use the distributive property to multiply 2\sqrt{3}+1 by 5-2\sqrt{3} and combine like terms.
\frac{8\sqrt{3}-4\times 3+5}{13}
The square of \sqrt{3} is 3.
\frac{8\sqrt{3}-12+5}{13}
Multiply -4 and 3 to get -12.
\frac{8\sqrt{3}-7}{13}
Add -12 and 5 to get -7.