Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{2}-3\sqrt{7}\right)\left(2\sqrt{2}-3\sqrt{7}\right)}{\left(2\sqrt{2}+3\sqrt{7}\right)\left(2\sqrt{2}-3\sqrt{7}\right)}=a+b\sqrt{2}
Rationalize the denominator of \frac{2\sqrt{2}-3\sqrt{7}}{2\sqrt{2}+3\sqrt{7}} by multiplying numerator and denominator by 2\sqrt{2}-3\sqrt{7}.
\frac{\left(2\sqrt{2}-3\sqrt{7}\right)\left(2\sqrt{2}-3\sqrt{7}\right)}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Consider \left(2\sqrt{2}+3\sqrt{7}\right)\left(2\sqrt{2}-3\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{2}-3\sqrt{7}\right)^{2}}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Multiply 2\sqrt{2}-3\sqrt{7} and 2\sqrt{2}-3\sqrt{7} to get \left(2\sqrt{2}-3\sqrt{7}\right)^{2}.
\frac{4\left(\sqrt{2}\right)^{2}-12\sqrt{2}\sqrt{7}+9\left(\sqrt{7}\right)^{2}}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-3\sqrt{7}\right)^{2}.
\frac{4\times 2-12\sqrt{2}\sqrt{7}+9\left(\sqrt{7}\right)^{2}}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
The square of \sqrt{2} is 2.
\frac{8-12\sqrt{2}\sqrt{7}+9\left(\sqrt{7}\right)^{2}}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Multiply 4 and 2 to get 8.
\frac{8-12\sqrt{14}+9\left(\sqrt{7}\right)^{2}}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{8-12\sqrt{14}+9\times 7}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
The square of \sqrt{7} is 7.
\frac{8-12\sqrt{14}+63}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Multiply 9 and 7 to get 63.
\frac{71-12\sqrt{14}}{\left(2\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Add 8 and 63 to get 71.
\frac{71-12\sqrt{14}}{2^{2}\left(\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{71-12\sqrt{14}}{4\left(\sqrt{2}\right)^{2}-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Calculate 2 to the power of 2 and get 4.
\frac{71-12\sqrt{14}}{4\times 2-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
The square of \sqrt{2} is 2.
\frac{71-12\sqrt{14}}{8-\left(3\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Multiply 4 and 2 to get 8.
\frac{71-12\sqrt{14}}{8-3^{2}\left(\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Expand \left(3\sqrt{7}\right)^{2}.
\frac{71-12\sqrt{14}}{8-9\left(\sqrt{7}\right)^{2}}=a+b\sqrt{2}
Calculate 3 to the power of 2 and get 9.
\frac{71-12\sqrt{14}}{8-9\times 7}=a+b\sqrt{2}
The square of \sqrt{7} is 7.
\frac{71-12\sqrt{14}}{8-63}=a+b\sqrt{2}
Multiply 9 and 7 to get 63.
\frac{71-12\sqrt{14}}{-55}=a+b\sqrt{2}
Subtract 63 from 8 to get -55.
\frac{-71+12\sqrt{14}}{55}=a+b\sqrt{2}
Multiply both numerator and denominator by -1.
-\frac{71}{55}+\frac{12}{55}\sqrt{14}=a+b\sqrt{2}
Divide each term of -71+12\sqrt{14} by 55 to get -\frac{71}{55}+\frac{12}{55}\sqrt{14}.
a+b\sqrt{2}=-\frac{71}{55}+\frac{12}{55}\sqrt{14}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{2}=-\frac{71}{55}+\frac{12}{55}\sqrt{14}-a
Subtract a from both sides.
\sqrt{2}b=-a+\frac{12\sqrt{14}}{55}-\frac{71}{55}
The equation is in standard form.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+\frac{12\sqrt{14}}{55}-\frac{71}{55}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
b=\frac{-a+\frac{12\sqrt{14}}{55}-\frac{71}{55}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
b=\frac{\sqrt{2}\left(-55a+12\sqrt{14}-71\right)}{110}
Divide -\frac{71}{55}+\frac{12\sqrt{14}}{55}-a by \sqrt{2}.