Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{\left(3-2\sqrt{6}\right)\left(3+2\sqrt{6}\right)}
Rationalize the denominator of \frac{2\sqrt{2}}{3-2\sqrt{6}} by multiplying numerator and denominator by 3+2\sqrt{6}.
\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{3^{2}-\left(-2\sqrt{6}\right)^{2}}
Consider \left(3-2\sqrt{6}\right)\left(3+2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{9-\left(-2\sqrt{6}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{9-\left(-2\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(-2\sqrt{6}\right)^{2}.
\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{9-4\left(\sqrt{6}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{9-4\times 6}
The square of \sqrt{6} is 6.
\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{9-24}
Multiply 4 and 6 to get 24.
\frac{2\sqrt{2}\left(3+2\sqrt{6}\right)}{-15}
Subtract 24 from 9 to get -15.
\frac{6\sqrt{2}+4\sqrt{2}\sqrt{6}}{-15}
Use the distributive property to multiply 2\sqrt{2} by 3+2\sqrt{6}.
\frac{6\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{3}}{-15}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6\sqrt{2}+4\times 2\sqrt{3}}{-15}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6\sqrt{2}+8\sqrt{3}}{-15}
Multiply 4 and 2 to get 8.