Solve for x
x = \frac{3 \sqrt{2}}{4} \approx 1.060660172
Graph
Share
Copied to clipboard
\frac{2}{3}x\times 3^{\frac{1}{2}}\times 2\sqrt{2}=2\sqrt{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{2\times 2}{3}x\times 3^{\frac{1}{2}}\sqrt{2}=2\sqrt{3}
Express \frac{2}{3}\times 2 as a single fraction.
\frac{4}{3}x\times 3^{\frac{1}{2}}\sqrt{2}=2\sqrt{3}
Multiply 2 and 2 to get 4.
\frac{4}{3}\sqrt{2}\sqrt{3}x=2\sqrt{3}
Reorder the terms.
\frac{4}{3}\sqrt{6}x=2\sqrt{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{4\sqrt{6}}{3}x=2\sqrt{3}
The equation is in standard form.
\frac{3\times \frac{4\sqrt{6}}{3}x}{4\sqrt{6}}=\frac{3\times 2\sqrt{3}}{4\sqrt{6}}
Divide both sides by \frac{4}{3}\sqrt{6}.
x=\frac{3\times 2\sqrt{3}}{4\sqrt{6}}
Dividing by \frac{4}{3}\sqrt{6} undoes the multiplication by \frac{4}{3}\sqrt{6}.
x=\frac{3\sqrt{2}}{4}
Divide 2\sqrt{3} by \frac{4}{3}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}