Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times 2\sqrt{3}+\sqrt{3}}{\sqrt{3}}-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{4\sqrt{3}+\sqrt{3}}{\sqrt{3}}-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
Multiply 2 and 2 to get 4.
\frac{5\sqrt{3}}{\sqrt{3}}-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
Combine 4\sqrt{3} and \sqrt{3} to get 5\sqrt{3}.
\frac{5\sqrt{3}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
Rationalize the denominator of \frac{5\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{5\sqrt{3}\sqrt{3}}{3}-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
The square of \sqrt{3} is 3.
\frac{5\times 3}{3}-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{15}{3}-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
Multiply 5 and 3 to get 15.
5-\left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right)+\left(\pi -2020\right)^{0}
Divide 15 by 3 to get 5.
5-\left(1-\left(\sqrt{3}\right)^{2}\right)+\left(\pi -2020\right)^{0}
Consider \left(1-\sqrt{3}\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
5-\left(1-3\right)+\left(\pi -2020\right)^{0}
The square of \sqrt{3} is 3.
5-\left(-2\right)+\left(\pi -2020\right)^{0}
Subtract 3 from 1 to get -2.
5+2+\left(\pi -2020\right)^{0}
The opposite of -2 is 2.
7+\left(\pi -2020\right)^{0}
Add 5 and 2 to get 7.
7+1
Calculate \pi -2020 to the power of 0 and get 1.
8
Add 7 and 1 to get 8.