Evaluate
-2
Share
Copied to clipboard
\frac{2\times 1+5\cos(90)-3\tan(360)}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Get the value of \sin(90) from trigonometric values table.
\frac{2+5\cos(90)-3\tan(360)}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Multiply 2 and 1 to get 2.
\frac{2+5\times 0-3\tan(360)}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Get the value of \cos(90) from trigonometric values table.
\frac{2+0-3\tan(360)}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Multiply 5 and 0 to get 0.
\frac{2-3\tan(360)}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Add 2 and 0 to get 2.
\frac{2-3\times 0}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Get the value of \tan(360) from trigonometric values table.
\frac{2-0}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Multiply 3 and 0 to get 0.
\frac{2}{\cos(180)\sin(90)-\sin(270)\sin(0)}
Subtract 0 from 2 to get 2.
\frac{2}{-\sin(90)-\sin(270)\sin(0)}
Get the value of \cos(180) from trigonometric values table.
\frac{2}{-1-\sin(270)\sin(0)}
Get the value of \sin(90) from trigonometric values table.
\frac{2}{-1-\left(-\sin(0)\right)}
Get the value of \sin(270) from trigonometric values table.
\frac{2}{-1-\left(-0\right)}
Get the value of \sin(0) from trigonometric values table.
\frac{2}{-1-0}
Multiply -1 and 0 to get 0.
\frac{2}{-1}
Subtract 0 from -1 to get -1.
-2
Fraction \frac{2}{-1} can be rewritten as -2 by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}