Solve for h
h=\frac{2t}{57}-\frac{73}{228}
Solve for t
t=\frac{57h}{2}+9.125
Share
Copied to clipboard
2\times \frac{2\pi \left(t-2\right)}{28.5}=\pi +4\pi h
Multiply both sides of the equation by 2.
2\times \frac{2\pi t-4\pi }{28.5}=\pi +4\pi h
Use the distributive property to multiply 2\pi by t-2.
2\left(\frac{2\pi t}{28.5}+\frac{-4\pi }{28.5}\right)=\pi +4\pi h
Divide each term of 2\pi t-4\pi by 28.5 to get \frac{2\pi t}{28.5}+\frac{-4\pi }{28.5}.
2\left(\frac{4}{57}\pi t+\frac{-4\pi }{28.5}\right)=\pi +4\pi h
Divide 2\pi t by 28.5 to get \frac{4}{57}\pi t.
2\left(\frac{4}{57}\pi t-\frac{8}{57}\pi \right)=\pi +4\pi h
Divide -4\pi by 28.5 to get -\frac{8}{57}\pi .
\frac{8}{57}\pi t-\frac{16}{57}\pi =\pi +4\pi h
Use the distributive property to multiply 2 by \frac{4}{57}\pi t-\frac{8}{57}\pi .
\pi +4\pi h=\frac{8}{57}\pi t-\frac{16}{57}\pi
Swap sides so that all variable terms are on the left hand side.
4\pi h=\frac{8}{57}\pi t-\frac{16}{57}\pi -\pi
Subtract \pi from both sides.
4\pi h=\frac{8}{57}\pi t-\frac{73}{57}\pi
Combine -\frac{16}{57}\pi and -\pi to get -\frac{73}{57}\pi .
4\pi h=\frac{8\pi t-73\pi }{57}
The equation is in standard form.
\frac{4\pi h}{4\pi }=\frac{\pi \times \frac{8t-73}{57}}{4\pi }
Divide both sides by 4\pi .
h=\frac{\pi \times \frac{8t-73}{57}}{4\pi }
Dividing by 4\pi undoes the multiplication by 4\pi .
h=\frac{2t}{57}-\frac{73}{228}
Divide \pi \times \frac{-73+8t}{57} by 4\pi .
2\times \frac{2\pi \left(t-2\right)}{28.5}=\pi +4\pi h
Multiply both sides of the equation by 2.
2\times \frac{2\pi t-4\pi }{28.5}=\pi +4\pi h
Use the distributive property to multiply 2\pi by t-2.
2\left(\frac{2\pi t}{28.5}+\frac{-4\pi }{28.5}\right)=\pi +4\pi h
Divide each term of 2\pi t-4\pi by 28.5 to get \frac{2\pi t}{28.5}+\frac{-4\pi }{28.5}.
2\left(\frac{4}{57}\pi t+\frac{-4\pi }{28.5}\right)=\pi +4\pi h
Divide 2\pi t by 28.5 to get \frac{4}{57}\pi t.
2\left(\frac{4}{57}\pi t-\frac{8}{57}\pi \right)=\pi +4\pi h
Divide -4\pi by 28.5 to get -\frac{8}{57}\pi .
\frac{8}{57}\pi t-\frac{16}{57}\pi =\pi +4\pi h
Use the distributive property to multiply 2 by \frac{4}{57}\pi t-\frac{8}{57}\pi .
\frac{8}{57}\pi t=\pi +4\pi h+\frac{16}{57}\pi
Add \frac{16}{57}\pi to both sides.
\frac{8}{57}\pi t=\frac{73}{57}\pi +4\pi h
Combine \pi and \frac{16}{57}\pi to get \frac{73}{57}\pi .
\frac{8\pi }{57}t=4\pi h+\frac{73\pi }{57}
The equation is in standard form.
\frac{57\times \frac{8\pi }{57}t}{8\pi }=\frac{57\pi \left(4h+\frac{73}{57}\right)}{8\pi }
Divide both sides by \frac{8}{57}\pi .
t=\frac{57\pi \left(4h+\frac{73}{57}\right)}{8\pi }
Dividing by \frac{8}{57}\pi undoes the multiplication by \frac{8}{57}\pi .
t=\frac{57h}{2}+9.125
Divide \pi \left(\frac{73}{57}+4h\right) by \frac{8}{57}\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}