Skip to main content
Differentiate w.r.t. μ
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}\mu }(\frac{2\mu M\left(\sqrt{3}-\mu \right)}{\left(\sqrt{3}+\mu \right)\left(\sqrt{3}-\mu \right)})
Rationalize the denominator of \frac{2\mu M}{\sqrt{3}+\mu } by multiplying numerator and denominator by \sqrt{3}-\mu .
\frac{\mathrm{d}}{\mathrm{d}\mu }(\frac{2\mu M\left(\sqrt{3}-\mu \right)}{\left(\sqrt{3}\right)^{2}-\mu ^{2}})
Consider \left(\sqrt{3}+\mu \right)\left(\sqrt{3}-\mu \right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}\mu }(\frac{2\mu M\left(\sqrt{3}-\mu \right)}{3-\mu ^{2}})
The square of \sqrt{3} is 3.
\frac{\mathrm{d}}{\mathrm{d}\mu }(\frac{2\mu M\sqrt{3}-2\mu ^{2}M}{3-\mu ^{2}})
Use the distributive property to multiply 2\mu M by \sqrt{3}-\mu .
\frac{\left(-\mu ^{2}+3\right)\frac{\mathrm{d}}{\mathrm{d}\mu }(2\sqrt{3}M\mu ^{1}+\left(-2M\right)\mu ^{2})-\left(2\sqrt{3}M\mu ^{1}+\left(-2M\right)\mu ^{2}\right)\frac{\mathrm{d}}{\mathrm{d}\mu }(-\mu ^{2}+3)}{\left(-\mu ^{2}+3\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(-\mu ^{2}+3\right)\left(2\sqrt{3}M\mu ^{1-1}+2\left(-2M\right)\mu ^{2-1}\right)-\left(2\sqrt{3}M\mu ^{1}+\left(-2M\right)\mu ^{2}\right)\times 2\left(-1\right)\mu ^{2-1}}{\left(-\mu ^{2}+3\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(-\mu ^{2}+3\right)\left(2\sqrt{3}M\mu ^{0}+\left(-4M\right)\mu ^{1}\right)-\left(2\sqrt{3}M\mu ^{1}+\left(-2M\right)\mu ^{2}\right)\left(-2\right)\mu ^{1}}{\left(-\mu ^{2}+3\right)^{2}}
Simplify.
\frac{-\mu ^{2}\times 2\sqrt{3}M\mu ^{0}-\mu ^{2}\left(-4M\right)\mu ^{1}+3\times 2\sqrt{3}M\mu ^{0}+3\left(-4M\right)\mu ^{1}-\left(2\sqrt{3}M\mu ^{1}+\left(-2M\right)\mu ^{2}\right)\left(-2\right)\mu ^{1}}{\left(-\mu ^{2}+3\right)^{2}}
Multiply -\mu ^{2}+3 times 2\sqrt{3}M\mu ^{0}+\left(-4M\right)\mu ^{1}.
\frac{-\mu ^{2}\times 2\sqrt{3}M\mu ^{0}-\mu ^{2}\left(-4M\right)\mu ^{1}+3\times 2\sqrt{3}M\mu ^{0}+3\left(-4M\right)\mu ^{1}-\left(2\sqrt{3}M\mu ^{1}\left(-2\right)\mu ^{1}+\left(-2M\right)\mu ^{2}\left(-2\right)\mu ^{1}\right)}{\left(-\mu ^{2}+3\right)^{2}}
Multiply 2\sqrt{3}M\mu ^{1}+\left(-2M\right)\mu ^{2} times -2\mu ^{1}.
\frac{-2\sqrt{3}M\mu ^{2}-\left(-4M\right)\mu ^{2+1}+3\times 2\sqrt{3}M\mu ^{0}+3\left(-4M\right)\mu ^{1}-\left(2\sqrt{3}M\left(-2\right)\mu ^{1+1}+\left(-2M\right)\left(-2\right)\mu ^{2+1}\right)}{\left(-\mu ^{2}+3\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{\left(-2\sqrt{3}M\right)\mu ^{2}+4M\mu ^{3}+6\sqrt{3}M\mu ^{0}+\left(-12M\right)\mu ^{1}-\left(\left(-4\sqrt{3}M\right)\mu ^{2}+4M\mu ^{3}\right)}{\left(-\mu ^{2}+3\right)^{2}}
Simplify.
\frac{2\left(\sqrt{3}-6\right)M\mu ^{2}+6\sqrt{3}M\mu ^{0}}{\left(-\mu ^{2}+3\right)^{2}}
Combine like terms.
\frac{2\left(\sqrt{3}-6\right)M\mu ^{2}+6\sqrt{3}M\times 1}{\left(-\mu ^{2}+3\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{2\left(\sqrt{3}-6\right)M\mu ^{2}+6\sqrt{3}M}{\left(-\mu ^{2}+3\right)^{2}}
For any term t, t\times 1=t and 1t=t.