Verify
false
Share
Copied to clipboard
\frac{2\times 10+7}{10\times 8.37}=\frac{\frac{1}{4}}{0.8}
Express \frac{\frac{2\times 10+7}{10}}{8.37} as a single fraction.
\frac{20+7}{10\times 8.37}=\frac{\frac{1}{4}}{0.8}
Multiply 2 and 10 to get 20.
\frac{27}{10\times 8.37}=\frac{\frac{1}{4}}{0.8}
Add 20 and 7 to get 27.
\frac{27}{83.7}=\frac{\frac{1}{4}}{0.8}
Multiply 10 and 8.37 to get 83.7.
\frac{270}{837}=\frac{\frac{1}{4}}{0.8}
Expand \frac{27}{83.7} by multiplying both numerator and the denominator by 10.
\frac{10}{31}=\frac{\frac{1}{4}}{0.8}
Reduce the fraction \frac{270}{837} to lowest terms by extracting and canceling out 27.
\frac{10}{31}=\frac{1}{4\times 0.8}
Express \frac{\frac{1}{4}}{0.8} as a single fraction.
\frac{10}{31}=\frac{1}{3.2}
Multiply 4 and 0.8 to get 3.2.
\frac{10}{31}=\frac{10}{32}
Expand \frac{1}{3.2} by multiplying both numerator and the denominator by 10.
\frac{10}{31}=\frac{5}{16}
Reduce the fraction \frac{10}{32} to lowest terms by extracting and canceling out 2.
\frac{160}{496}=\frac{155}{496}
Least common multiple of 31 and 16 is 496. Convert \frac{10}{31} and \frac{5}{16} to fractions with denominator 496.
\text{false}
Compare \frac{160}{496} and \frac{155}{496}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}