Evaluate
\frac{7x}{\left(x-2\right)\left(x+3\right)}
Expand
\frac{7x}{\left(x-2\right)\left(x+3\right)}
Graph
Share
Copied to clipboard
\frac{2\times 5+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Express \frac{\frac{2\times 5+4}{5}}{x-2} as a single fraction.
\frac{10+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Multiply 2 and 5 to get 10.
\frac{14}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Add 10 and 4 to get 14.
\frac{14}{5\left(x-2\right)}+\frac{4\times 5+1}{5\left(x+3\right)}
Express \frac{\frac{4\times 5+1}{5}}{x+3} as a single fraction.
\frac{14}{5\left(x-2\right)}+\frac{20+1}{5\left(x+3\right)}
Multiply 4 and 5 to get 20.
\frac{14}{5\left(x-2\right)}+\frac{21}{5\left(x+3\right)}
Add 20 and 1 to get 21.
\frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)}+\frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(x-2\right) and 5\left(x+3\right) is 5\left(x-2\right)\left(x+3\right). Multiply \frac{14}{5\left(x-2\right)} times \frac{x+3}{x+3}. Multiply \frac{21}{5\left(x+3\right)} times \frac{x-2}{x-2}.
\frac{14\left(x+3\right)+21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
Since \frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)} and \frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{14x+42+21x-42}{5\left(x-2\right)\left(x+3\right)}
Do the multiplications in 14\left(x+3\right)+21\left(x-2\right).
\frac{35x}{5\left(x-2\right)\left(x+3\right)}
Combine like terms in 14x+42+21x-42.
\frac{7x}{\left(x-2\right)\left(x+3\right)}
Cancel out 5 in both numerator and denominator.
\frac{7x}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).
\frac{2\times 5+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Express \frac{\frac{2\times 5+4}{5}}{x-2} as a single fraction.
\frac{10+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Multiply 2 and 5 to get 10.
\frac{14}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Add 10 and 4 to get 14.
\frac{14}{5\left(x-2\right)}+\frac{4\times 5+1}{5\left(x+3\right)}
Express \frac{\frac{4\times 5+1}{5}}{x+3} as a single fraction.
\frac{14}{5\left(x-2\right)}+\frac{20+1}{5\left(x+3\right)}
Multiply 4 and 5 to get 20.
\frac{14}{5\left(x-2\right)}+\frac{21}{5\left(x+3\right)}
Add 20 and 1 to get 21.
\frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)}+\frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(x-2\right) and 5\left(x+3\right) is 5\left(x-2\right)\left(x+3\right). Multiply \frac{14}{5\left(x-2\right)} times \frac{x+3}{x+3}. Multiply \frac{21}{5\left(x+3\right)} times \frac{x-2}{x-2}.
\frac{14\left(x+3\right)+21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
Since \frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)} and \frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{14x+42+21x-42}{5\left(x-2\right)\left(x+3\right)}
Do the multiplications in 14\left(x+3\right)+21\left(x-2\right).
\frac{35x}{5\left(x-2\right)\left(x+3\right)}
Combine like terms in 14x+42+21x-42.
\frac{7x}{\left(x-2\right)\left(x+3\right)}
Cancel out 5 in both numerator and denominator.
\frac{7x}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}