Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\times 5+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Express \frac{\frac{2\times 5+4}{5}}{x-2} as a single fraction.
\frac{10+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Multiply 2 and 5 to get 10.
\frac{14}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Add 10 and 4 to get 14.
\frac{14}{5\left(x-2\right)}+\frac{4\times 5+1}{5\left(x+3\right)}
Express \frac{\frac{4\times 5+1}{5}}{x+3} as a single fraction.
\frac{14}{5\left(x-2\right)}+\frac{20+1}{5\left(x+3\right)}
Multiply 4 and 5 to get 20.
\frac{14}{5\left(x-2\right)}+\frac{21}{5\left(x+3\right)}
Add 20 and 1 to get 21.
\frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)}+\frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(x-2\right) and 5\left(x+3\right) is 5\left(x-2\right)\left(x+3\right). Multiply \frac{14}{5\left(x-2\right)} times \frac{x+3}{x+3}. Multiply \frac{21}{5\left(x+3\right)} times \frac{x-2}{x-2}.
\frac{14\left(x+3\right)+21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
Since \frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)} and \frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{14x+42+21x-42}{5\left(x-2\right)\left(x+3\right)}
Do the multiplications in 14\left(x+3\right)+21\left(x-2\right).
\frac{35x}{5\left(x-2\right)\left(x+3\right)}
Combine like terms in 14x+42+21x-42.
\frac{7x}{\left(x-2\right)\left(x+3\right)}
Cancel out 5 in both numerator and denominator.
\frac{7x}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).
\frac{2\times 5+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Express \frac{\frac{2\times 5+4}{5}}{x-2} as a single fraction.
\frac{10+4}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Multiply 2 and 5 to get 10.
\frac{14}{5\left(x-2\right)}+\frac{\frac{4\times 5+1}{5}}{x+3}
Add 10 and 4 to get 14.
\frac{14}{5\left(x-2\right)}+\frac{4\times 5+1}{5\left(x+3\right)}
Express \frac{\frac{4\times 5+1}{5}}{x+3} as a single fraction.
\frac{14}{5\left(x-2\right)}+\frac{20+1}{5\left(x+3\right)}
Multiply 4 and 5 to get 20.
\frac{14}{5\left(x-2\right)}+\frac{21}{5\left(x+3\right)}
Add 20 and 1 to get 21.
\frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)}+\frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(x-2\right) and 5\left(x+3\right) is 5\left(x-2\right)\left(x+3\right). Multiply \frac{14}{5\left(x-2\right)} times \frac{x+3}{x+3}. Multiply \frac{21}{5\left(x+3\right)} times \frac{x-2}{x-2}.
\frac{14\left(x+3\right)+21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)}
Since \frac{14\left(x+3\right)}{5\left(x-2\right)\left(x+3\right)} and \frac{21\left(x-2\right)}{5\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{14x+42+21x-42}{5\left(x-2\right)\left(x+3\right)}
Do the multiplications in 14\left(x+3\right)+21\left(x-2\right).
\frac{35x}{5\left(x-2\right)\left(x+3\right)}
Combine like terms in 14x+42+21x-42.
\frac{7x}{\left(x-2\right)\left(x+3\right)}
Cancel out 5 in both numerator and denominator.
\frac{7x}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).