Evaluate
\frac{13}{4}=3.25
Factor
\frac{13}{2 ^ {2}} = 3\frac{1}{4} = 3.25
Share
Copied to clipboard
\frac{\frac{6+2}{3}\times \frac{3\times 4+3}{4}-\frac{5\times 8+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Multiply 2 and 3 to get 6.
\frac{\frac{8}{3}\times \frac{3\times 4+3}{4}-\frac{5\times 8+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Add 6 and 2 to get 8.
\frac{\frac{8}{3}\times \frac{12+3}{4}-\frac{5\times 8+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Multiply 3 and 4 to get 12.
\frac{\frac{8}{3}\times \frac{15}{4}-\frac{5\times 8+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Add 12 and 3 to get 15.
\frac{\frac{8\times 15}{3\times 4}-\frac{5\times 8+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Multiply \frac{8}{3} times \frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{120}{12}-\frac{5\times 8+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Do the multiplications in the fraction \frac{8\times 15}{3\times 4}.
\frac{10-\frac{5\times 8+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Divide 120 by 12 to get 10.
\frac{10-\frac{40+1}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Multiply 5 and 8 to get 40.
\frac{10-\frac{41}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Add 40 and 1 to get 41.
\frac{\frac{80}{8}-\frac{41}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Convert 10 to fraction \frac{80}{8}.
\frac{\frac{80-41}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Since \frac{80}{8} and \frac{41}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{39}{8}}{\frac{\frac{1\times 13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Subtract 41 from 80 to get 39.
\frac{\frac{39}{8}}{\frac{\frac{13+8}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Multiply 1 and 13 to get 13.
\frac{\frac{39}{8}}{\frac{\frac{21}{13}\times \frac{13}{42}}{\frac{1}{3}}}
Add 13 and 8 to get 21.
\frac{\frac{39}{8}}{\frac{\frac{21\times 13}{13\times 42}}{\frac{1}{3}}}
Multiply \frac{21}{13} times \frac{13}{42} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{39}{8}}{\frac{\frac{21}{42}}{\frac{1}{3}}}
Cancel out 13 in both numerator and denominator.
\frac{\frac{39}{8}}{\frac{\frac{1}{2}}{\frac{1}{3}}}
Reduce the fraction \frac{21}{42} to lowest terms by extracting and canceling out 21.
\frac{\frac{39}{8}}{\frac{1}{2}\times 3}
Divide \frac{1}{2} by \frac{1}{3} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{3}.
\frac{\frac{39}{8}}{\frac{3}{2}}
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{39}{8}\times \frac{2}{3}
Divide \frac{39}{8} by \frac{3}{2} by multiplying \frac{39}{8} by the reciprocal of \frac{3}{2}.
\frac{39\times 2}{8\times 3}
Multiply \frac{39}{8} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{78}{24}
Do the multiplications in the fraction \frac{39\times 2}{8\times 3}.
\frac{13}{4}
Reduce the fraction \frac{78}{24} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}