Evaluate
\frac{145\sqrt{5}}{72}\approx 4.503192455
Share
Copied to clipboard
\frac{\left(2\times 24+10\right)\times 10\sqrt{20}}{24\times 24}
Divide \frac{2\times 24+10}{24} by \frac{24}{10\sqrt{20}} by multiplying \frac{2\times 24+10}{24} by the reciprocal of \frac{24}{10\sqrt{20}}.
\frac{5\sqrt{20}\left(10+2\times 24\right)}{12\times 24}
Cancel out 2 in both numerator and denominator.
\frac{5\times 2\sqrt{5}\left(10+2\times 24\right)}{12\times 24}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{10\sqrt{5}\left(10+2\times 24\right)}{12\times 24}
Multiply 5 and 2 to get 10.
\frac{10\sqrt{5}\left(10+48\right)}{12\times 24}
Multiply 2 and 24 to get 48.
\frac{10\sqrt{5}\times 58}{12\times 24}
Add 10 and 48 to get 58.
\frac{580\sqrt{5}}{12\times 24}
Multiply 10 and 58 to get 580.
\frac{580\sqrt{5}}{288}
Multiply 12 and 24 to get 288.
\frac{145}{72}\sqrt{5}
Divide 580\sqrt{5} by 288 to get \frac{145}{72}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}