Solve for s
s = \frac{51}{16} = 3\frac{3}{16} = 3.1875
Share
Copied to clipboard
\frac{\left(2\times 2+1\right)\times 3}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Divide \frac{2\times 2+1}{2} by \frac{3\times 3+1}{3} by multiplying \frac{2\times 2+1}{2} by the reciprocal of \frac{3\times 3+1}{3}.
\frac{\left(4+1\right)\times 3}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Multiply 2 and 2 to get 4.
\frac{5\times 3}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Add 4 and 1 to get 5.
\frac{15}{2\left(3\times 3+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Multiply 5 and 3 to get 15.
\frac{15}{2\left(9+1\right)}=\frac{s}{\frac{4\times 4+1}{4}}
Multiply 3 and 3 to get 9.
\frac{15}{2\times 10}=\frac{s}{\frac{4\times 4+1}{4}}
Add 9 and 1 to get 10.
\frac{15}{20}=\frac{s}{\frac{4\times 4+1}{4}}
Multiply 2 and 10 to get 20.
\frac{3}{4}=\frac{s}{\frac{4\times 4+1}{4}}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
\frac{3}{4}=\frac{s\times 4}{4\times 4+1}
Divide s by \frac{4\times 4+1}{4} by multiplying s by the reciprocal of \frac{4\times 4+1}{4}.
\frac{3}{4}=\frac{s\times 4}{16+1}
Multiply 4 and 4 to get 16.
\frac{3}{4}=\frac{s\times 4}{17}
Add 16 and 1 to get 17.
\frac{s\times 4}{17}=\frac{3}{4}
Swap sides so that all variable terms are on the left hand side.
s\times 4=\frac{3}{4}\times 17
Multiply both sides by 17.
s\times 4=\frac{3\times 17}{4}
Express \frac{3}{4}\times 17 as a single fraction.
s\times 4=\frac{51}{4}
Multiply 3 and 17 to get 51.
s=\frac{\frac{51}{4}}{4}
Divide both sides by 4.
s=\frac{51}{4\times 4}
Express \frac{\frac{51}{4}}{4} as a single fraction.
s=\frac{51}{16}
Multiply 4 and 4 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}