Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. h
Tick mark Image

Similar Problems from Web Search

Share

\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}}
Multiply 2 and 6,67 to get 13,34.
\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}}
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}}
Multiply 13,34 and \frac{1}{100000000000} to get \frac{667}{5000000000000}.
\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}}
Multiply \frac{667}{5000000000000} and 3 to get \frac{2001}{5000000000000}.
\frac{\frac{2001}{5000000000000}kmh}{300000km}
Divide \frac{2001}{5000000000000}km by \frac{300000km}{h} by multiplying \frac{2001}{5000000000000}km by the reciprocal of \frac{300000km}{h}.
\frac{\frac{2001}{5000000000000}h}{300000}
Cancel out km in both numerator and denominator.
\frac{667}{500000000000000000}h
Divide \frac{2001}{5000000000000}h by 300000 to get \frac{667}{500000000000000000}h.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}})
Multiply 2 and 6,67 to get 13,34.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}})
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}})
Multiply 13,34 and \frac{1}{100000000000} to get \frac{667}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}})
Multiply \frac{667}{5000000000000} and 3 to get \frac{2001}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}kmh}{300000km})
Divide \frac{2001}{5000000000000}km by \frac{300000km}{h} by multiplying \frac{2001}{5000000000000}km by the reciprocal of \frac{300000km}{h}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}h}{300000})
Cancel out km in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{667}{500000000000000000}h)
Divide \frac{2001}{5000000000000}h by 300000 to get \frac{667}{500000000000000000}h.
\frac{667}{500000000000000000}h^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{667}{500000000000000000}h^{0}
Subtract 1 from 1.
\frac{667}{500000000000000000}\times 1
For any term t except 0, t^{0}=1.
\frac{667}{500000000000000000}
For any term t, t\times 1=t and 1t=t.