\frac { 2 \cdot 6,67 \cdot 10 ^ { - 11 } \cdot 3 k m } { 300000 k m / h }
Evaluate
\frac{667h}{500000000000000000}
Differentiate w.r.t. h
0,000000000000001334
Quiz
5 problems similar to:
\frac { 2 \cdot 6,67 \cdot 10 ^ { - 11 } \cdot 3 k m } { 300000 k m / h }
Share
Copied to clipboard
\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}}
Multiply 2 and 6,67 to get 13,34.
\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}}
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}}
Multiply 13,34 and \frac{1}{100000000000} to get \frac{667}{5000000000000}.
\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}}
Multiply \frac{667}{5000000000000} and 3 to get \frac{2001}{5000000000000}.
\frac{\frac{2001}{5000000000000}kmh}{300000km}
Divide \frac{2001}{5000000000000}km by \frac{300000km}{h} by multiplying \frac{2001}{5000000000000}km by the reciprocal of \frac{300000km}{h}.
\frac{\frac{2001}{5000000000000}h}{300000}
Cancel out km in both numerator and denominator.
\frac{667}{500000000000000000}h
Divide \frac{2001}{5000000000000}h by 300000 to get \frac{667}{500000000000000000}h.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}})
Multiply 2 and 6,67 to get 13,34.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}})
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}})
Multiply 13,34 and \frac{1}{100000000000} to get \frac{667}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}})
Multiply \frac{667}{5000000000000} and 3 to get \frac{2001}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}kmh}{300000km})
Divide \frac{2001}{5000000000000}km by \frac{300000km}{h} by multiplying \frac{2001}{5000000000000}km by the reciprocal of \frac{300000km}{h}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}h}{300000})
Cancel out km in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{667}{500000000000000000}h)
Divide \frac{2001}{5000000000000}h by 300000 to get \frac{667}{500000000000000000}h.
\frac{667}{500000000000000000}h^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{667}{500000000000000000}h^{0}
Subtract 1 from 1.
\frac{667}{500000000000000000}\times 1
For any term t except 0, t^{0}=1.
\frac{667}{500000000000000000}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}