\frac { 2 \cdot 57,75 } { 11 \cdot \frac { 7 } { 12 } } = 18
Verify
true
Share
Copied to clipboard
\frac{115,5}{11\times \frac{7}{12}}=18
Multiply 2 and 57,75 to get 115,5.
\frac{115,5}{\frac{11\times 7}{12}}=18
Express 11\times \frac{7}{12} as a single fraction.
\frac{115,5}{\frac{77}{12}}=18
Multiply 11 and 7 to get 77.
115,5\times \frac{12}{77}=18
Divide 115,5 by \frac{77}{12} by multiplying 115,5 by the reciprocal of \frac{77}{12}.
\frac{231}{2}\times \frac{12}{77}=18
Convert decimal number 115,5 to fraction \frac{1155}{10}. Reduce the fraction \frac{1155}{10} to lowest terms by extracting and canceling out 5.
\frac{231\times 12}{2\times 77}=18
Multiply \frac{231}{2} times \frac{12}{77} by multiplying numerator times numerator and denominator times denominator.
\frac{2772}{154}=18
Do the multiplications in the fraction \frac{231\times 12}{2\times 77}.
18=18
Divide 2772 by 154 to get 18.
\text{true}
Compare 18 and 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}