Evaluate
-\frac{2\sqrt{105}}{7}\approx -2.927700219
Share
Copied to clipboard
\frac{2-10\times 1+11\left(-2\right)}{\sqrt{2^{2}+\left(-10\right)^{2}+1^{2}}}
Multiply 2 and 1 to get 2.
\frac{2-10+11\left(-2\right)}{\sqrt{2^{2}+\left(-10\right)^{2}+1^{2}}}
Multiply 10 and 1 to get 10.
\frac{-8+11\left(-2\right)}{\sqrt{2^{2}+\left(-10\right)^{2}+1^{2}}}
Subtract 10 from 2 to get -8.
\frac{-8-22}{\sqrt{2^{2}+\left(-10\right)^{2}+1^{2}}}
Multiply 11 and -2 to get -22.
\frac{-30}{\sqrt{2^{2}+\left(-10\right)^{2}+1^{2}}}
Subtract 22 from -8 to get -30.
\frac{-30}{\sqrt{4+\left(-10\right)^{2}+1^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-30}{\sqrt{4+100+1^{2}}}
Calculate -10 to the power of 2 and get 100.
\frac{-30}{\sqrt{104+1^{2}}}
Add 4 and 100 to get 104.
\frac{-30}{\sqrt{104+1}}
Calculate 1 to the power of 2 and get 1.
\frac{-30}{\sqrt{105}}
Add 104 and 1 to get 105.
\frac{-30\sqrt{105}}{\left(\sqrt{105}\right)^{2}}
Rationalize the denominator of \frac{-30}{\sqrt{105}} by multiplying numerator and denominator by \sqrt{105}.
\frac{-30\sqrt{105}}{105}
The square of \sqrt{105} is 105.
-\frac{2}{7}\sqrt{105}
Divide -30\sqrt{105} by 105 to get -\frac{2}{7}\sqrt{105}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}