Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{2^{2}-1^{2}}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Multiply 2 and 1 to get 2.
\frac{2}{4-1^{2}}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{2}{4-1}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{2}{3}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Subtract 1 from 4 to get 3.
\frac{2}{3}+\frac{-\left(4+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{2}{3}+\frac{-\left(4+1\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{2}{3}+\frac{-5}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Add 4 and 1 to get 5.
\frac{2}{3}+\frac{-5}{\left(4-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{2}{3}+\frac{-5}{\left(4-1\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{2}{3}+\frac{-5}{3^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Subtract 1 from 4 to get 3.
\frac{2}{3}+\frac{-5}{9}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 3 to the power of 2 and get 9.
\frac{2}{3}-\frac{5}{9}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Fraction \frac{-5}{9} can be rewritten as -\frac{5}{9} by extracting the negative sign.
\frac{2}{3}-\frac{1}{180}+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Multiply -\frac{5}{9} and 0,01 to get -\frac{1}{180}.
\frac{119}{180}+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Subtract \frac{1}{180} from \frac{2}{3} to get \frac{119}{180}.
\frac{119}{180}+\frac{2\left(4+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{119}{180}+\frac{2\left(4+1\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{119}{180}+\frac{2\times 5}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Add 4 and 1 to get 5.
\frac{119}{180}+\frac{10}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Multiply 2 and 5 to get 10.
\frac{119}{180}+\frac{10}{\left(4-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{119}{180}+\frac{10}{\left(4-1\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{119}{180}+\frac{10}{3^{2}}\times 0,03
Subtract 1 from 4 to get 3.
\frac{119}{180}+\frac{10}{9}\times 0,03
Calculate 3 to the power of 2 and get 9.
\frac{119}{180}+\frac{1}{30}
Multiply \frac{10}{9} and 0,03 to get \frac{1}{30}.
\frac{25}{36}
Add \frac{119}{180} and \frac{1}{30} to get \frac{25}{36}.