\frac { 2 \cdot 1 } { 2 ^ { 2 } - 1 ^ { 2 } } + \frac { - 1 ( 2 ^ { 2 } + 1 ^ { 2 } ) } { ( 2 ^ { 2 } - 1 ^ { 2 } ) ^ { 2 } } \cdot 0,01 + \frac { 2 ( 2 ^ { 2 } + 1 ^ { 2 } ) } { ( 2 ^ { 2 } - 1 ^ { 2 } ) ^ { 2 } } \cdot 0,03 =
Evaluate
\frac{25}{36}\approx 0,694444444
Factor
\frac{5 ^ {2}}{2 ^ {2} \cdot 3 ^ {2}} = 0.6944444444444444
Share
Copied to clipboard
\frac{2}{2^{2}-1^{2}}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Multiply 2 and 1 to get 2.
\frac{2}{4-1^{2}}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{2}{4-1}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{2}{3}+\frac{-\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Subtract 1 from 4 to get 3.
\frac{2}{3}+\frac{-\left(4+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{2}{3}+\frac{-\left(4+1\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{2}{3}+\frac{-5}{\left(2^{2}-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Add 4 and 1 to get 5.
\frac{2}{3}+\frac{-5}{\left(4-1^{2}\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{2}{3}+\frac{-5}{\left(4-1\right)^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{2}{3}+\frac{-5}{3^{2}}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Subtract 1 from 4 to get 3.
\frac{2}{3}+\frac{-5}{9}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 3 to the power of 2 and get 9.
\frac{2}{3}-\frac{5}{9}\times 0,01+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Fraction \frac{-5}{9} can be rewritten as -\frac{5}{9} by extracting the negative sign.
\frac{2}{3}-\frac{1}{180}+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Multiply -\frac{5}{9} and 0,01 to get -\frac{1}{180}.
\frac{119}{180}+\frac{2\left(2^{2}+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Subtract \frac{1}{180} from \frac{2}{3} to get \frac{119}{180}.
\frac{119}{180}+\frac{2\left(4+1^{2}\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{119}{180}+\frac{2\left(4+1\right)}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{119}{180}+\frac{2\times 5}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Add 4 and 1 to get 5.
\frac{119}{180}+\frac{10}{\left(2^{2}-1^{2}\right)^{2}}\times 0,03
Multiply 2 and 5 to get 10.
\frac{119}{180}+\frac{10}{\left(4-1^{2}\right)^{2}}\times 0,03
Calculate 2 to the power of 2 and get 4.
\frac{119}{180}+\frac{10}{\left(4-1\right)^{2}}\times 0,03
Calculate 1 to the power of 2 and get 1.
\frac{119}{180}+\frac{10}{3^{2}}\times 0,03
Subtract 1 from 4 to get 3.
\frac{119}{180}+\frac{10}{9}\times 0,03
Calculate 3 to the power of 2 and get 9.
\frac{119}{180}+\frac{1}{30}
Multiply \frac{10}{9} and 0,03 to get \frac{1}{30}.
\frac{25}{36}
Add \frac{119}{180} and \frac{1}{30} to get \frac{25}{36}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}