Solve for x
x=-\frac{39}{44}\approx -0.886363636
Graph
Share
Copied to clipboard
3\left(2\left(x-1\right)\left(2+x\right)-3\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3\left(\left(2x-2\right)\left(2+x\right)-3\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Use the distributive property to multiply 2 by x-1.
3\left(2x+2x^{2}-4-3\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Use the distributive property to multiply 2x-2 by 2+x and combine like terms.
3\left(2x+2x^{2}-7\right)-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Subtract 3 from -4 to get -7.
6x+6x^{2}-21-6\left(x+2\right)^{2}=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Use the distributive property to multiply 3 by 2x+2x^{2}-7.
6x+6x^{2}-21-6\left(x^{2}+4x+4\right)=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
6x+6x^{2}-21-6x^{2}-24x-24=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Use the distributive property to multiply -6 by x^{2}+4x+4.
6x-21-24x-24=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Combine 6x^{2} and -6x^{2} to get 0.
-18x-21-24=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Combine 6x and -24x to get -18x.
-18x-45=6x\left(3-\sqrt[5]{-1}\right)-2\left(3-x\right)
Subtract 24 from -21 to get -45.
-18x-45=6x\left(3-\left(-1\right)\right)-2\left(3-x\right)
Calculate \sqrt[5]{-1} and get -1.
-18x-45=6x\left(3+1\right)-2\left(3-x\right)
The opposite of -1 is 1.
-18x-45=6x\times 4-2\left(3-x\right)
Add 3 and 1 to get 4.
-18x-45=24x-2\left(3-x\right)
Multiply 6 and 4 to get 24.
-18x-45=24x-6+2x
Use the distributive property to multiply -2 by 3-x.
-18x-45=26x-6
Combine 24x and 2x to get 26x.
-18x-45-26x=-6
Subtract 26x from both sides.
-44x-45=-6
Combine -18x and -26x to get -44x.
-44x=-6+45
Add 45 to both sides.
-44x=39
Add -6 and 45 to get 39.
x=\frac{39}{-44}
Divide both sides by -44.
x=-\frac{39}{44}
Fraction \frac{39}{-44} can be rewritten as -\frac{39}{44} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}