Evaluate
\frac{14\sqrt{35}}{5}+5\approx 21.565023393
Share
Copied to clipboard
\frac{2\times 7\sqrt{7}+\sqrt{125}}{\sqrt{5}}
Factor 343=7^{2}\times 7. Rewrite the square root of the product \sqrt{7^{2}\times 7} as the product of square roots \sqrt{7^{2}}\sqrt{7}. Take the square root of 7^{2}.
\frac{14\sqrt{7}+\sqrt{125}}{\sqrt{5}}
Multiply 2 and 7 to get 14.
\frac{14\sqrt{7}+5\sqrt{5}}{\sqrt{5}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{\left(14\sqrt{7}+5\sqrt{5}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{14\sqrt{7}+5\sqrt{5}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(14\sqrt{7}+5\sqrt{5}\right)\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{14\sqrt{7}\sqrt{5}+5\left(\sqrt{5}\right)^{2}}{5}
Use the distributive property to multiply 14\sqrt{7}+5\sqrt{5} by \sqrt{5}.
\frac{14\sqrt{35}+5\left(\sqrt{5}\right)^{2}}{5}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\frac{14\sqrt{35}+5\times 5}{5}
The square of \sqrt{5} is 5.
\frac{14\sqrt{35}+25}{5}
Multiply 5 and 5 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}