Evaluate
\frac{15}{23}\approx 0.652173913
Factor
\frac{3 \cdot 5}{23} = 0.6521739130434783
Share
Copied to clipboard
\frac{2\times \frac{40320}{3!}+7\times \frac{8!}{4!}}{8!-\frac{1\times 8!}{4!}}
The factorial of 8 is 40320.
\frac{2\times \frac{40320}{6}+7\times \frac{8!}{4!}}{8!-\frac{1\times 8!}{4!}}
The factorial of 3 is 6.
\frac{2\times 6720+7\times \frac{8!}{4!}}{8!-\frac{1\times 8!}{4!}}
Divide 40320 by 6 to get 6720.
\frac{13440+7\times \frac{8!}{4!}}{8!-\frac{1\times 8!}{4!}}
Multiply 2 and 6720 to get 13440.
\frac{13440+7\times \frac{40320}{4!}}{8!-\frac{1\times 8!}{4!}}
The factorial of 8 is 40320.
\frac{13440+7\times \frac{40320}{24}}{8!-\frac{1\times 8!}{4!}}
The factorial of 4 is 24.
\frac{13440+7\times 1680}{8!-\frac{1\times 8!}{4!}}
Divide 40320 by 24 to get 1680.
\frac{13440+11760}{8!-\frac{1\times 8!}{4!}}
Multiply 7 and 1680 to get 11760.
\frac{25200}{8!-\frac{1\times 8!}{4!}}
Add 13440 and 11760 to get 25200.
\frac{25200}{40320-\frac{1\times 8!}{4!}}
The factorial of 8 is 40320.
\frac{25200}{40320-\frac{1\times 40320}{4!}}
The factorial of 8 is 40320.
\frac{25200}{40320-\frac{40320}{4!}}
Multiply 1 and 40320 to get 40320.
\frac{25200}{40320-\frac{40320}{24}}
The factorial of 4 is 24.
\frac{25200}{40320-1680}
Divide 40320 by 24 to get 1680.
\frac{25200}{38640}
Subtract 1680 from 40320 to get 38640.
\frac{15}{23}
Reduce the fraction \frac{25200}{38640} to lowest terms by extracting and canceling out 1680.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}