Evaluate
\frac{2\ln(10)\left(2^{x}-128\right)}{\ln(2)\cos(\sqrt{xy})+\ln(5)\cos(\sqrt{xy})+\ln(\frac{1}{150})}
Differentiate w.r.t. x
\frac{\ln(2)\ln(5)\ln(10)\sqrt{xy}\cos(\sqrt{xy})\times 2^{x+1}+\ln(10)\ln(2)^{2}\sqrt{xy}\cos(\sqrt{xy})\times 2^{x+1}+\ln(2)\ln(5)y\sin(\sqrt{xy})\times 2^{x+1}+\ln(2)^{2}y\sin(\sqrt{xy})\times 2^{x}+\ln(5)^{2}y\sin(\sqrt{xy})\times 2^{x}-\ln(2)\ln(3)\ln(10)\sqrt{xy}\times 2^{x+1}-\ln(10)\ln(2)^{2}\sqrt{xy}\times 2^{x+1}-4\ln(2)\ln(5)\ln(10)\sqrt{xy}\times 2^{x}-256\ln(2)\ln(5)y\sin(\sqrt{xy})-128\ln(2)^{2}y\sin(\sqrt{xy})-128\ln(5)^{2}y\sin(\sqrt{xy})}{\sqrt{xy}\left(\ln(2)\cos(\sqrt{xy})+\ln(5)\cos(\sqrt{xy})+\ln(\frac{1}{150})\right)^{2}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}