Evaluate
-\frac{72}{5}=-14.4
Factor
-\frac{72}{5} = -14\frac{2}{5} = -14.4
Share
Copied to clipboard
\frac{2^{5}}{5}-\frac{2^{3}}{3}-2^{3}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{32}{5}-\frac{2^{3}}{3}-2^{3}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Calculate 2 to the power of 5 and get 32.
\frac{32}{5}-\frac{8}{3}-2^{3}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Calculate 2 to the power of 3 and get 8.
\frac{96}{15}-\frac{40}{15}-2^{3}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Least common multiple of 5 and 3 is 15. Convert \frac{32}{5} and \frac{8}{3} to fractions with denominator 15.
\frac{96-40}{15}-2^{3}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Since \frac{96}{15} and \frac{40}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{56}{15}-2^{3}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Subtract 40 from 96 to get 56.
\frac{56}{15}-8-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Calculate 2 to the power of 3 and get 8.
\frac{56}{15}-\frac{120}{15}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Convert 8 to fraction \frac{120}{15}.
\frac{56-120}{15}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Since \frac{56}{15} and \frac{120}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{64}{15}-4\times 2-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Subtract 120 from 56 to get -64.
-\frac{64}{15}-8-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Multiply 4 and 2 to get 8.
-\frac{64}{15}-\frac{120}{15}-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Convert 8 to fraction \frac{120}{15}.
\frac{-64-120}{15}-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Since -\frac{64}{15} and \frac{120}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{184}{15}-\left(\frac{-1}{5}+\frac{1}{3}-2+4\right)
Subtract 120 from -64 to get -184.
-\frac{184}{15}-\left(-\frac{1}{5}+\frac{1}{3}-2+4\right)
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
-\frac{184}{15}-\left(-\frac{3}{15}+\frac{5}{15}-2+4\right)
Least common multiple of 5 and 3 is 15. Convert -\frac{1}{5} and \frac{1}{3} to fractions with denominator 15.
-\frac{184}{15}-\left(\frac{-3+5}{15}-2+4\right)
Since -\frac{3}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
-\frac{184}{15}-\left(\frac{2}{15}-2+4\right)
Add -3 and 5 to get 2.
-\frac{184}{15}-\left(\frac{2}{15}-\frac{30}{15}+4\right)
Convert 2 to fraction \frac{30}{15}.
-\frac{184}{15}-\left(\frac{2-30}{15}+4\right)
Since \frac{2}{15} and \frac{30}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{184}{15}-\left(-\frac{28}{15}+4\right)
Subtract 30 from 2 to get -28.
-\frac{184}{15}-\left(-\frac{28}{15}+\frac{60}{15}\right)
Convert 4 to fraction \frac{60}{15}.
-\frac{184}{15}-\frac{-28+60}{15}
Since -\frac{28}{15} and \frac{60}{15} have the same denominator, add them by adding their numerators.
-\frac{184}{15}-\frac{32}{15}
Add -28 and 60 to get 32.
\frac{-184-32}{15}
Since -\frac{184}{15} and \frac{32}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{-216}{15}
Subtract 32 from -184 to get -216.
-\frac{72}{5}
Reduce the fraction \frac{-216}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}