Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. n
Tick mark Image

Similar Problems from Web Search

Share

\frac{2^{-6}m^{14}n^{6}}{5^{-3}m^{6}n^{14}}
Use the rules of exponents to simplify the expression.
\frac{2^{-6}}{5^{-3}}m^{14-6}n^{6-14}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2^{-6}}{5^{-3}}m^{8}n^{6-14}
Subtract 6 from 14.
\frac{2^{-6}}{5^{-3}}m^{8}n^{-8}
Subtract 14 from 6.
\frac{125}{64}m^{8}\times \frac{1}{n^{8}}
Divide \frac{1}{64} by \frac{1}{125} by multiplying \frac{1}{64} by the reciprocal of \frac{1}{125}.