Evaluate
\frac{125\times \left(\frac{m}{n}\right)^{5}}{64}
Differentiate w.r.t. n
-\frac{625m^{5}}{64n^{6}}
Share
Copied to clipboard
\frac{2^{-6}m^{11}n^{6}}{5^{-3}m^{6}n^{11}}
Use the rules of exponents to simplify the expression.
\frac{2^{-6}}{5^{-3}}m^{11-6}n^{6-11}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2^{-6}}{5^{-3}}m^{5}n^{6-11}
Subtract 6 from 11.
\frac{2^{-6}}{5^{-3}}m^{5}n^{-5}
Subtract 11 from 6.
\frac{125}{64}m^{5}\times \frac{1}{n^{5}}
Divide \frac{1}{64} by \frac{1}{125} by multiplying \frac{1}{64} by the reciprocal of \frac{1}{125}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}