Evaluate
\frac{731}{324}\approx 2.25617284
Factor
\frac{17 \cdot 43}{2 ^ {2} \cdot 3 ^ {4}} = 2\frac{83}{324} = 2.256172839506173
Share
Copied to clipboard
\frac{2^{3}+2\times \left(3^{2}\right)^{-2}+13^{0}}{8^{\frac{2}{3}}}
To multiply powers of the same base, add their exponents. Add -1 and 4 to get 3.
\frac{2^{3}+2\times 3^{-4}+13^{0}}{8^{\frac{2}{3}}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{8+2\times 3^{-4}+13^{0}}{8^{\frac{2}{3}}}
Calculate 2 to the power of 3 and get 8.
\frac{8+2\times \frac{1}{81}+13^{0}}{8^{\frac{2}{3}}}
Calculate 3 to the power of -4 and get \frac{1}{81}.
\frac{8+\frac{2}{81}+13^{0}}{8^{\frac{2}{3}}}
Multiply 2 and \frac{1}{81} to get \frac{2}{81}.
\frac{\frac{650}{81}+13^{0}}{8^{\frac{2}{3}}}
Add 8 and \frac{2}{81} to get \frac{650}{81}.
\frac{\frac{650}{81}+1}{8^{\frac{2}{3}}}
Calculate 13 to the power of 0 and get 1.
\frac{\frac{731}{81}}{8^{\frac{2}{3}}}
Add \frac{650}{81} and 1 to get \frac{731}{81}.
\frac{\frac{731}{81}}{4}
Calculate 8 to the power of \frac{2}{3} and get 4.
\frac{731}{81\times 4}
Express \frac{\frac{731}{81}}{4} as a single fraction.
\frac{731}{324}
Multiply 81 and 4 to get 324.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}