Verify
false
Share
Copied to clipboard
\frac{2\times 4}{4\times 3}=\frac{36}{4}+\frac{312}{4}+\frac{\frac{15}{8}}{6}
Divide \frac{2}{4} by \frac{3}{4} by multiplying \frac{2}{4} by the reciprocal of \frac{3}{4}.
\frac{2}{3}=\frac{36}{4}+\frac{312}{4}+\frac{\frac{15}{8}}{6}
Cancel out 2\times 2 in both numerator and denominator.
\frac{2}{3}=9+\frac{312}{4}+\frac{\frac{15}{8}}{6}
Divide 36 by 4 to get 9.
\frac{2}{3}=9+78+\frac{\frac{15}{8}}{6}
Divide 312 by 4 to get 78.
\frac{2}{3}=87+\frac{\frac{15}{8}}{6}
Add 9 and 78 to get 87.
\frac{2}{3}=87+\frac{15}{8\times 6}
Express \frac{\frac{15}{8}}{6} as a single fraction.
\frac{2}{3}=87+\frac{15}{48}
Multiply 8 and 6 to get 48.
\frac{2}{3}=87+\frac{5}{16}
Reduce the fraction \frac{15}{48} to lowest terms by extracting and canceling out 3.
\frac{2}{3}=\frac{1392}{16}+\frac{5}{16}
Convert 87 to fraction \frac{1392}{16}.
\frac{2}{3}=\frac{1392+5}{16}
Since \frac{1392}{16} and \frac{5}{16} have the same denominator, add them by adding their numerators.
\frac{2}{3}=\frac{1397}{16}
Add 1392 and 5 to get 1397.
\frac{32}{48}=\frac{4191}{48}
Least common multiple of 3 and 16 is 48. Convert \frac{2}{3} and \frac{1397}{16} to fractions with denominator 48.
\text{false}
Compare \frac{32}{48} and \frac{4191}{48}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}