Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-1+2i}{-1}-\frac{3}{2-i}
Multiply both numerator and denominator of \frac{2+i}{i} by imaginary unit i.
1-2i-\frac{3}{2-i}
Divide -1+2i by -1 to get 1-2i.
1-2i-\frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{3}{2-i} by the complex conjugate of the denominator, 2+i.
1-2i-\frac{6+3i}{5}
Do the multiplications in \frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
1-2i+\left(-\frac{6}{5}-\frac{3}{5}i\right)
Divide 6+3i by 5 to get \frac{6}{5}+\frac{3}{5}i.
-\frac{1}{5}-\frac{13}{5}i
Add 1-2i and -\frac{6}{5}-\frac{3}{5}i to get -\frac{1}{5}-\frac{13}{5}i.
Re(\frac{-1+2i}{-1}-\frac{3}{2-i})
Multiply both numerator and denominator of \frac{2+i}{i} by imaginary unit i.
Re(1-2i-\frac{3}{2-i})
Divide -1+2i by -1 to get 1-2i.
Re(1-2i-\frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{3}{2-i} by the complex conjugate of the denominator, 2+i.
Re(1-2i-\frac{6+3i}{5})
Do the multiplications in \frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(1-2i+\left(-\frac{6}{5}-\frac{3}{5}i\right))
Divide 6+3i by 5 to get \frac{6}{5}+\frac{3}{5}i.
Re(-\frac{1}{5}-\frac{13}{5}i)
Add 1-2i and -\frac{6}{5}-\frac{3}{5}i to get -\frac{1}{5}-\frac{13}{5}i.
-\frac{1}{5}
The real part of -\frac{1}{5}-\frac{13}{5}i is -\frac{1}{5}.