Evaluate
-\frac{1}{5}-\frac{13}{5}i=-0.2-2.6i
Real Part
-\frac{1}{5} = -0.2
Share
Copied to clipboard
\frac{-1+2i}{-1}-\frac{3}{2-i}
Multiply both numerator and denominator of \frac{2+i}{i} by imaginary unit i.
1-2i-\frac{3}{2-i}
Divide -1+2i by -1 to get 1-2i.
1-2i-\frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{3}{2-i} by the complex conjugate of the denominator, 2+i.
1-2i-\frac{6+3i}{5}
Do the multiplications in \frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
1-2i+\left(-\frac{6}{5}-\frac{3}{5}i\right)
Divide 6+3i by 5 to get \frac{6}{5}+\frac{3}{5}i.
-\frac{1}{5}-\frac{13}{5}i
Add 1-2i and -\frac{6}{5}-\frac{3}{5}i to get -\frac{1}{5}-\frac{13}{5}i.
Re(\frac{-1+2i}{-1}-\frac{3}{2-i})
Multiply both numerator and denominator of \frac{2+i}{i} by imaginary unit i.
Re(1-2i-\frac{3}{2-i})
Divide -1+2i by -1 to get 1-2i.
Re(1-2i-\frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{3}{2-i} by the complex conjugate of the denominator, 2+i.
Re(1-2i-\frac{6+3i}{5})
Do the multiplications in \frac{3\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(1-2i+\left(-\frac{6}{5}-\frac{3}{5}i\right))
Divide 6+3i by 5 to get \frac{6}{5}+\frac{3}{5}i.
Re(-\frac{1}{5}-\frac{13}{5}i)
Add 1-2i and -\frac{6}{5}-\frac{3}{5}i to get -\frac{1}{5}-\frac{13}{5}i.
-\frac{1}{5}
The real part of -\frac{1}{5}-\frac{13}{5}i is -\frac{1}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}