Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+i.
\frac{\left(2+i\right)\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+i\right)\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 2+2i+2i+i^{2}}{5}
Multiply complex numbers 2+i and 2+i like you multiply binomials.
\frac{2\times 2+2i+2i-1}{5}
By definition, i^{2} is -1.
\frac{4+2i+2i-1}{5}
Do the multiplications in 2\times 2+2i+2i-1.
\frac{4-1+\left(2+2\right)i}{5}
Combine the real and imaginary parts in 4+2i+2i-1.
\frac{3+4i}{5}
Do the additions in 4-1+\left(2+2\right)i.
\frac{3}{5}+\frac{4}{5}i
Divide 3+4i by 5 to get \frac{3}{5}+\frac{4}{5}i.
Re(\frac{\left(2+i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{2+i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{\left(2+i\right)\left(2+i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+i\right)\left(2+i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 2+2i+2i+i^{2}}{5})
Multiply complex numbers 2+i and 2+i like you multiply binomials.
Re(\frac{2\times 2+2i+2i-1}{5})
By definition, i^{2} is -1.
Re(\frac{4+2i+2i-1}{5})
Do the multiplications in 2\times 2+2i+2i-1.
Re(\frac{4-1+\left(2+2\right)i}{5})
Combine the real and imaginary parts in 4+2i+2i-1.
Re(\frac{3+4i}{5})
Do the additions in 4-1+\left(2+2\right)i.
Re(\frac{3}{5}+\frac{4}{5}i)
Divide 3+4i by 5 to get \frac{3}{5}+\frac{4}{5}i.
\frac{3}{5}
The real part of \frac{3}{5}+\frac{4}{5}i is \frac{3}{5}.