Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+5\sqrt{2}\right)\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}
Rationalize the denominator of \frac{2+5\sqrt{2}}{2-\sqrt{2}} by multiplying numerator and denominator by 2+\sqrt{2}.
\frac{\left(2+5\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+5\sqrt{2}\right)\left(2+\sqrt{2}\right)}{4-2}
Square 2. Square \sqrt{2}.
\frac{\left(2+5\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}
Subtract 2 from 4 to get 2.
\frac{4+2\sqrt{2}+10\sqrt{2}+5\left(\sqrt{2}\right)^{2}}{2}
Apply the distributive property by multiplying each term of 2+5\sqrt{2} by each term of 2+\sqrt{2}.
\frac{4+12\sqrt{2}+5\left(\sqrt{2}\right)^{2}}{2}
Combine 2\sqrt{2} and 10\sqrt{2} to get 12\sqrt{2}.
\frac{4+12\sqrt{2}+5\times 2}{2}
The square of \sqrt{2} is 2.
\frac{4+12\sqrt{2}+10}{2}
Multiply 5 and 2 to get 10.
\frac{14+12\sqrt{2}}{2}
Add 4 and 10 to get 14.
7+6\sqrt{2}
Divide each term of 14+12\sqrt{2} by 2 to get 7+6\sqrt{2}.