Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+4i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+5i.
\frac{\left(2+4i\right)\left(2+5i\right)}{2^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+4i\right)\left(2+5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 2+2\times \left(5i\right)+4i\times 2+4\times 5i^{2}}{29}
Multiply complex numbers 2+4i and 2+5i like you multiply binomials.
\frac{2\times 2+2\times \left(5i\right)+4i\times 2+4\times 5\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{4+10i+8i-20}{29}
Do the multiplications in 2\times 2+2\times \left(5i\right)+4i\times 2+4\times 5\left(-1\right).
\frac{4-20+\left(10+8\right)i}{29}
Combine the real and imaginary parts in 4+10i+8i-20.
\frac{-16+18i}{29}
Do the additions in 4-20+\left(10+8\right)i.
-\frac{16}{29}+\frac{18}{29}i
Divide -16+18i by 29 to get -\frac{16}{29}+\frac{18}{29}i.
Re(\frac{\left(2+4i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)})
Multiply both numerator and denominator of \frac{2+4i}{2-5i} by the complex conjugate of the denominator, 2+5i.
Re(\frac{\left(2+4i\right)\left(2+5i\right)}{2^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+4i\right)\left(2+5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 2+2\times \left(5i\right)+4i\times 2+4\times 5i^{2}}{29})
Multiply complex numbers 2+4i and 2+5i like you multiply binomials.
Re(\frac{2\times 2+2\times \left(5i\right)+4i\times 2+4\times 5\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{4+10i+8i-20}{29})
Do the multiplications in 2\times 2+2\times \left(5i\right)+4i\times 2+4\times 5\left(-1\right).
Re(\frac{4-20+\left(10+8\right)i}{29})
Combine the real and imaginary parts in 4+10i+8i-20.
Re(\frac{-16+18i}{29})
Do the additions in 4-20+\left(10+8\right)i.
Re(-\frac{16}{29}+\frac{18}{29}i)
Divide -16+18i by 29 to get -\frac{16}{29}+\frac{18}{29}i.
-\frac{16}{29}
The real part of -\frac{16}{29}+\frac{18}{29}i is -\frac{16}{29}.