Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+3i\right)\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+5i.
\frac{\left(2+3i\right)\left(4+5i\right)}{4^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+3i\right)\left(4+5i\right)}{41}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 4+2\times \left(5i\right)+3i\times 4+3\times 5i^{2}}{41}
Multiply complex numbers 2+3i and 4+5i like you multiply binomials.
\frac{2\times 4+2\times \left(5i\right)+3i\times 4+3\times 5\left(-1\right)}{41}
By definition, i^{2} is -1.
\frac{8+10i+12i-15}{41}
Do the multiplications in 2\times 4+2\times \left(5i\right)+3i\times 4+3\times 5\left(-1\right).
\frac{8-15+\left(10+12\right)i}{41}
Combine the real and imaginary parts in 8+10i+12i-15.
\frac{-7+22i}{41}
Do the additions in 8-15+\left(10+12\right)i.
-\frac{7}{41}+\frac{22}{41}i
Divide -7+22i by 41 to get -\frac{7}{41}+\frac{22}{41}i.
Re(\frac{\left(2+3i\right)\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)})
Multiply both numerator and denominator of \frac{2+3i}{4-5i} by the complex conjugate of the denominator, 4+5i.
Re(\frac{\left(2+3i\right)\left(4+5i\right)}{4^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+3i\right)\left(4+5i\right)}{41})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 4+2\times \left(5i\right)+3i\times 4+3\times 5i^{2}}{41})
Multiply complex numbers 2+3i and 4+5i like you multiply binomials.
Re(\frac{2\times 4+2\times \left(5i\right)+3i\times 4+3\times 5\left(-1\right)}{41})
By definition, i^{2} is -1.
Re(\frac{8+10i+12i-15}{41})
Do the multiplications in 2\times 4+2\times \left(5i\right)+3i\times 4+3\times 5\left(-1\right).
Re(\frac{8-15+\left(10+12\right)i}{41})
Combine the real and imaginary parts in 8+10i+12i-15.
Re(\frac{-7+22i}{41})
Do the additions in 8-15+\left(10+12\right)i.
Re(-\frac{7}{41}+\frac{22}{41}i)
Divide -7+22i by 41 to get -\frac{7}{41}+\frac{22}{41}i.
-\frac{7}{41}
The real part of -\frac{7}{41}+\frac{22}{41}i is -\frac{7}{41}.