Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -1-i.
\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+3i\right)\left(-1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}}{2}
Multiply complex numbers 2+3i and -1-i like you multiply binomials.
\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{-2-2i-3i+3}{2}
Do the multiplications in 2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right).
\frac{-2+3+\left(-2-3\right)i}{2}
Combine the real and imaginary parts in -2-2i-3i+3.
\frac{1-5i}{2}
Do the additions in -2+3+\left(-2-3\right)i.
\frac{1}{2}-\frac{5}{2}i
Divide 1-5i by 2 to get \frac{1}{2}-\frac{5}{2}i.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)})
Multiply both numerator and denominator of \frac{2+3i}{-1+i} by the complex conjugate of the denominator, -1-i.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+3i\right)\left(-1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}}{2})
Multiply complex numbers 2+3i and -1-i like you multiply binomials.
Re(\frac{2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{-2-2i-3i+3}{2})
Do the multiplications in 2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right).
Re(\frac{-2+3+\left(-2-3\right)i}{2})
Combine the real and imaginary parts in -2-2i-3i+3.
Re(\frac{1-5i}{2})
Do the additions in -2+3+\left(-2-3\right)i.
Re(\frac{1}{2}-\frac{5}{2}i)
Divide 1-5i by 2 to get \frac{1}{2}-\frac{5}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}-\frac{5}{2}i is \frac{1}{2}.