Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{28}{-3-3i}
Add 2 and 26 to get 28.
\frac{28\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3+3i.
\frac{28\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{28\left(-3+3i\right)}{18}
By definition, i^{2} is -1. Calculate the denominator.
\frac{28\left(-3\right)+28\times \left(3i\right)}{18}
Multiply 28 times -3+3i.
\frac{-84+84i}{18}
Do the multiplications in 28\left(-3\right)+28\times \left(3i\right).
-\frac{14}{3}+\frac{14}{3}i
Divide -84+84i by 18 to get -\frac{14}{3}+\frac{14}{3}i.
Re(\frac{28}{-3-3i})
Add 2 and 26 to get 28.
Re(\frac{28\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)})
Multiply both numerator and denominator of \frac{28}{-3-3i} by the complex conjugate of the denominator, -3+3i.
Re(\frac{28\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{28\left(-3+3i\right)}{18})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{28\left(-3\right)+28\times \left(3i\right)}{18})
Multiply 28 times -3+3i.
Re(\frac{-84+84i}{18})
Do the multiplications in 28\left(-3\right)+28\times \left(3i\right).
Re(-\frac{14}{3}+\frac{14}{3}i)
Divide -84+84i by 18 to get -\frac{14}{3}+\frac{14}{3}i.
-\frac{14}{3}
The real part of -\frac{14}{3}+\frac{14}{3}i is -\frac{14}{3}.