Evaluate
-\frac{14}{3}+\frac{14}{3}i\approx -4.666666667+4.666666667i
Real Part
-\frac{14}{3} = -4\frac{2}{3} = -4.666666666666667
Share
Copied to clipboard
\frac{28}{-3-3i}
Add 2 and 26 to get 28.
\frac{28\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3+3i.
\frac{28\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{28\left(-3+3i\right)}{18}
By definition, i^{2} is -1. Calculate the denominator.
\frac{28\left(-3\right)+28\times \left(3i\right)}{18}
Multiply 28 times -3+3i.
\frac{-84+84i}{18}
Do the multiplications in 28\left(-3\right)+28\times \left(3i\right).
-\frac{14}{3}+\frac{14}{3}i
Divide -84+84i by 18 to get -\frac{14}{3}+\frac{14}{3}i.
Re(\frac{28}{-3-3i})
Add 2 and 26 to get 28.
Re(\frac{28\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)})
Multiply both numerator and denominator of \frac{28}{-3-3i} by the complex conjugate of the denominator, -3+3i.
Re(\frac{28\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{28\left(-3+3i\right)}{18})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{28\left(-3\right)+28\times \left(3i\right)}{18})
Multiply 28 times -3+3i.
Re(\frac{-84+84i}{18})
Do the multiplications in 28\left(-3\right)+28\times \left(3i\right).
Re(-\frac{14}{3}+\frac{14}{3}i)
Divide -84+84i by 18 to get -\frac{14}{3}+\frac{14}{3}i.
-\frac{14}{3}
The real part of -\frac{14}{3}+\frac{14}{3}i is -\frac{14}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}