Evaluate
-\frac{2}{3}\approx -0.666666667
Real Part
-\frac{2}{3} = -0.6666666666666666
Share
Copied to clipboard
\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3+3i.
\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+2i\right)\left(-3+3i\right)}{18}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3i^{2}}{18}
Multiply complex numbers 2+2i and -3+3i like you multiply binomials.
\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right)}{18}
By definition, i^{2} is -1.
\frac{-6+6i-6i-6}{18}
Do the multiplications in 2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right).
\frac{-6-6+\left(6-6\right)i}{18}
Combine the real and imaginary parts in -6+6i-6i-6.
\frac{-12}{18}
Do the additions in -6-6+\left(6-6\right)i.
-\frac{2}{3}
Divide -12 by 18 to get -\frac{2}{3}.
Re(\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)})
Multiply both numerator and denominator of \frac{2+2i}{-3-3i} by the complex conjugate of the denominator, -3+3i.
Re(\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+2i\right)\left(-3+3i\right)}{18})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3i^{2}}{18})
Multiply complex numbers 2+2i and -3+3i like you multiply binomials.
Re(\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right)}{18})
By definition, i^{2} is -1.
Re(\frac{-6+6i-6i-6}{18})
Do the multiplications in 2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right).
Re(\frac{-6-6+\left(6-6\right)i}{18})
Combine the real and imaginary parts in -6+6i-6i-6.
Re(\frac{-12}{18})
Do the additions in -6-6+\left(6-6\right)i.
Re(-\frac{2}{3})
Divide -12 by 18 to get -\frac{2}{3}.
-\frac{2}{3}
The real part of -\frac{2}{3} is -\frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}