Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -3+3i.
\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+2i\right)\left(-3+3i\right)}{18}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3i^{2}}{18}
Multiply complex numbers 2+2i and -3+3i like you multiply binomials.
\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right)}{18}
By definition, i^{2} is -1.
\frac{-6+6i-6i-6}{18}
Do the multiplications in 2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right).
\frac{-6-6+\left(6-6\right)i}{18}
Combine the real and imaginary parts in -6+6i-6i-6.
\frac{-12}{18}
Do the additions in -6-6+\left(6-6\right)i.
-\frac{2}{3}
Divide -12 by 18 to get -\frac{2}{3}.
Re(\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3-3i\right)\left(-3+3i\right)})
Multiply both numerator and denominator of \frac{2+2i}{-3-3i} by the complex conjugate of the denominator, -3+3i.
Re(\frac{\left(2+2i\right)\left(-3+3i\right)}{\left(-3\right)^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+2i\right)\left(-3+3i\right)}{18})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3i^{2}}{18})
Multiply complex numbers 2+2i and -3+3i like you multiply binomials.
Re(\frac{2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right)}{18})
By definition, i^{2} is -1.
Re(\frac{-6+6i-6i-6}{18})
Do the multiplications in 2\left(-3\right)+2\times \left(3i\right)+2i\left(-3\right)+2\times 3\left(-1\right).
Re(\frac{-6-6+\left(6-6\right)i}{18})
Combine the real and imaginary parts in -6+6i-6i-6.
Re(\frac{-12}{18})
Do the additions in -6-6+\left(6-6\right)i.
Re(-\frac{2}{3})
Divide -12 by 18 to get -\frac{2}{3}.
-\frac{2}{3}
The real part of -\frac{2}{3} is -\frac{2}{3}.