Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}}
Multiply complex numbers 1+i and 1-i like you multiply binomials.
\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)}
By definition, i^{2} is -1.
\frac{2+2i}{1-i+i+1}
Do the multiplications in 1\times 1+1\left(-i\right)+i-\left(-1\right).
\frac{2+2i}{1+1+\left(-1+1\right)i}
Combine the real and imaginary parts in 1-i+i+1.
\frac{2+2i}{2}
Do the additions in 1+1+\left(-1+1\right)i.
1+i
Divide 2+2i by 2 to get 1+i.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}})
Multiply complex numbers 1+i and 1-i like you multiply binomials.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)})
By definition, i^{2} is -1.
Re(\frac{2+2i}{1-i+i+1})
Do the multiplications in 1\times 1+1\left(-i\right)+i-\left(-1\right).
Re(\frac{2+2i}{1+1+\left(-1+1\right)i})
Combine the real and imaginary parts in 1-i+i+1.
Re(\frac{2+2i}{2})
Do the additions in 1+1+\left(-1+1\right)i.
Re(1+i)
Divide 2+2i by 2 to get 1+i.
1
The real part of 1+i is 1.