Evaluate
-6\sqrt{3}-10\approx -20.392304845
Factor
2 {(-3 \sqrt{3} - 5)} = -20.392304845
Share
Copied to clipboard
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
Rationalize the denominator of \frac{2+2\sqrt{3}}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{3-4}
Square \sqrt{3}. Square 2.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{-1}
Subtract 4 from 3 to get -1.
-\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)
Anything divided by -1 gives its opposite.
-\left(2\sqrt{3}+4+2\left(\sqrt{3}\right)^{2}+4\sqrt{3}\right)
Apply the distributive property by multiplying each term of 2+2\sqrt{3} by each term of \sqrt{3}+2.
-\left(2\sqrt{3}+4+2\times 3+4\sqrt{3}\right)
The square of \sqrt{3} is 3.
-\left(2\sqrt{3}+4+6+4\sqrt{3}\right)
Multiply 2 and 3 to get 6.
-\left(2\sqrt{3}+10+4\sqrt{3}\right)
Add 4 and 6 to get 10.
-\left(6\sqrt{3}+10\right)
Combine 2\sqrt{3} and 4\sqrt{3} to get 6\sqrt{3}.
-6\sqrt{3}-10
To find the opposite of 6\sqrt{3}+10, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}