Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
Rationalize the denominator of \frac{2+2\sqrt{3}}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{3-4}
Square \sqrt{3}. Square 2.
\frac{\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)}{-1}
Subtract 4 from 3 to get -1.
-\left(2+2\sqrt{3}\right)\left(\sqrt{3}+2\right)
Anything divided by -1 gives its opposite.
-\left(2\sqrt{3}+4+2\left(\sqrt{3}\right)^{2}+4\sqrt{3}\right)
Apply the distributive property by multiplying each term of 2+2\sqrt{3} by each term of \sqrt{3}+2.
-\left(2\sqrt{3}+4+2\times 3+4\sqrt{3}\right)
The square of \sqrt{3} is 3.
-\left(2\sqrt{3}+4+6+4\sqrt{3}\right)
Multiply 2 and 3 to get 6.
-\left(2\sqrt{3}+10+4\sqrt{3}\right)
Add 4 and 6 to get 10.
-\left(6\sqrt{3}+10\right)
Combine 2\sqrt{3} and 4\sqrt{3} to get 6\sqrt{3}.
-6\sqrt{3}-10
To find the opposite of 6\sqrt{3}+10, find the opposite of each term.