Evaluate
\frac{\sqrt{21}}{5}+\frac{2\sqrt{7}}{5}-\frac{3\sqrt{2}}{5}-\frac{3\sqrt{6}}{10}\approx 0.391440603
Share
Copied to clipboard
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}
Rationalize the denominator of \frac{2+\sqrt{3}}{3\sqrt{2}+2\sqrt{7}} by multiplying numerator and denominator by 3\sqrt{2}-2\sqrt{7}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Consider \left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\times 2-\left(2\sqrt{7}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-\left(2\sqrt{7}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-2^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\left(\sqrt{7}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\times 7}
The square of \sqrt{7} is 7.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-28}
Multiply 4 and 7 to get 28.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{-10}
Subtract 28 from 18 to get -10.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{7}}{-10}
Apply the distributive property by multiplying each term of 2+\sqrt{3} by each term of 3\sqrt{2}-2\sqrt{7}.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{3}\sqrt{7}}{-10}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{21}}{-10}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\frac{-6\sqrt{2}+4\sqrt{7}-3\sqrt{6}+2\sqrt{21}}{10}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}